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Representing Word Meaning and Order Information in a Composite
Holographic Lexicon
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The authors present a computational model that builds a holographic lexicon representing both word
meaning and word order from unsupervised experience with natural language. The model uses simple
convolution and superposition mechanisms (cf. B. B. Murdock, 1982) to learn distributed holographic
representations for words. The structure of the resulting lexicon can account for empirical data from
classic experiments studying semantic typicality, categorization, priming, and semantic constraint in
sentence completions. Furthermore, order information can be retrieved from the holographic represen-
tations, allowing the model to account for limited word transitions without the need for built-in transition
rules. The model demonstrates that a broad range of psychological data can be accounted for directly
from the structure of lexical representations learned in this way, without the need for complexity to be
built into either the processing mechanisms or the representations. The holographic representations are
an appropriate knowledge representation to be used by higher order models of language comprehension,
relieving the complexity required at the higher level.
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Language is an immensely complex behavior. At minimum, it
requires knowledge of the words of that language, typically
thought to be stored in a mental lexicon, and knowledge of the
grammatical application of those words in sentences. Higher order
models of language comprehension (e.g., Kintsch, 1988, 1998,
2001) require a realistic representation of word meaning and order
information to be successful, and it would be particularly appeal-
ing if these representations could be learned from the statistical
redundancies present in natural language.

The mental lexicon has a rich history in psychology. Tradition-
ally, the lexicon has been viewed as a dictionary database, each
entry containing a word’s meaning and, in some cases, even its
syntactic rules and phonological characteristics (see Elman, 2004,
and Pustejovsky, 1996, for reviews). The precise representation of
this information, however, has been greatly debated. This article
presents a model based on signal processing and associative mem-

ory theory that builds distributed representations for words con-
taining both semantic and order information from unsupervised
learning of natural language. Word meaning and order information
are stored together as a single pattern of elements in a distributed
holographic lexicon. A word’s representation gradually stabilizes
from statistical sampling across experience. Furthermore, transi-
tion information can be retrieved from the lexicon using holo-
graphic decoding and resonance.

In the 1950s, Charles Osgood and George Miller worked inde-
pendently on seemingly unrelated problems. Osgood (1952, e.g.)
tackled the problem of representing word meaning. It appeared at
the outset that representing word meaning would always be ab-
stract and unobtainable, and the best approach possible was to
approximate semantic relationships with subjective ratings. Miller
(1951, e.g.), on the other hand, was interested in the problem of
sequential dependencies between words. Because sequential de-
pendencies involve direct statistical transitions between words, it
appeared at the outset that a comprehensive model of sequential
dependencies was within reach, whereas a comprehensive model
of abstract semantics was likely unobtainable. The sequential
dependency problem, however, turned out to be considerably more
complicated than was originally anticipated.

By the 1990s, there were several good models that could learn
semantic representations for words automatically from experience
with text (e.g., Landauer & Dumais, 1997; Lund & Burgess, 1996).
However, these models neglect information inherent in word tran-
sitions. Theoretical work on word meaning has largely been de-
veloped independently from theoretical work on word transitions,
but a complete model of the lexicon needs to incorporate both
sources of information to account for the broad range of semantic
categorization, typicality, and priming data, as well as data relating
to lexical class, word usage, and word transitions in sentences.
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Representing Word Meaning

Pioneering work on the representation of knowledge focused on
feature lists and semantic networks. Feature lists represent words
using lists of descriptive binary features (e.g., E. E. Smith, Shoben,
& Rips, 1974). For example, birds have wings, and dogs do not.
The feature lists are typically hand coded by the theorist on the
basis of intuition. Some recent models of word recognition bypass
the problem of determining what semantic features to use by
employing random binary vectors (e.g., Masson, 1995; Plaut,
1995), whereas others build the lists from empirical feature reports
generated by subjects (e.g., McRae, de Sa, & Seidenberg, 1997).
However, all feature list models share the common theme that the
semantic representation for a word is a list of binary features that
describe it.

By contrast, semantic network theories (e.g., Collins & Quillian,
1972; Collins & Loftus, 1975) assume that words are represented
by localist nodes of interconnected concepts. Words that are con-
nected to one another with many (or with direct) pathways are
more similar in meaning. More recent semantic networks learn
new concepts and connections unsupervised and have large-scale
learning structure that parallels human learning in many ways
(Steyvers & Tenenbaum, 2005).

A third method of semantic representation has built on Osgood’s
(1941, 1952, 1971) multidimensional representation scheme (see
also Salton, 1973; Salton, Wong, & Yang, 1975). Modern hy-
perspace models build semantic representations directly from sta-
tistical co-occurrences of words in text, typically representing
them in a high-dimensional semantic space (e.g., Landauer &
Dumais, 1997; Lund & Burgess, 1996). The semantic space ap-
proach minimizes representation and processing assumptions be-
cause much of the model’s complexity is learned from the envi-
ronment, not hardwired into the model itself.

Semantic space models differ from semantic networks in that
they generate distributed representations for words rather than the
localist representations used by semantic nets. Semantic space
models and feature lists are both distributed word representations;
a principled difference between a semantic space model and a
feature list model is the nature of word features. In a semantic
space model, the features that represent a word are abstract values
that have no identifiable meaning in isolation from the other
features. Although a particular feature of bird in a feature list
might be “has wings,” the presence of which has birdlike meaning
on its own, the meaning of bird in a semantic space model is the
aggregate distributed pattern of all the abstract dimensions, none of
which has interpretable meaning on its own.

Latent semantic analysis (LSA; Deerwester, Dumais, Furnas,
Landauer, & Harshman, 1990; Landauer & Dumais, 1997) has
received the most attention of all the semantic space models. LSA
begins by computing a Word � Document frequency matrix from
a large corpus of text, using about 90,000 words and about 37,000
documents; obviously, this matrix is quite sparse. The raw entries
represent the frequency with which each word appears in a par-
ticular document. The entries are then converted to log-frequency
values and are divided by the word’s entropy, �� p log p, over all
its documents. Next, the dimensionality of the Word � Document
matrix is optimized using singular value decomposition (SVD) so
that each word is represented by a vector of approximately 300
dimensions; however, the dimensions have no particular meaning

or direct correspondence to the text. SVD has the effect of bringing
out latent semantic relationships among words even if they have
never co-occurred in the same document. The basic premise in
LSA is that the aggregate contexts in which a word does and does
not appear provide a set of mutual constraints to induce the word’s
meaning (Landauer, Foltz, & Laham, 1998), or, as Firth (1957) has
put it, “you shall know a word by the company it keeps” (p. 11).

LSA has been very successful at simulating a wide range of
psycholinguistic phenomena, from judgments of semantic similar-
ity (Landauer & Dumais, 1997) to word categorization (Laham,
2000), discourse comprehension (Kintsch, 1998), and judgments
of essay quality (Landauer, Laham, Rehder, & Schreiner, 1997).
LSA has even earned college entrance-level grades on the Test of
English as a Foreign Language (TOEFL) and has been shown to
acquire vocabulary at a rate that is comparable to standard devel-
opmental trends (Landauer & Dumais, 1997).

In spite of their successes, co-occurrence models have been
criticized on a number of grounds. Most importantly, LSA is often
criticized as a bag-of-words model in that it ignores the statistical
information inherent in word transitions within documents (e.g.,
Perfetti, 1998; Serafin & Di Eugenio, 2004; Wiemer-Hastings,
2000, 2001). A word’s meaning is defined not only by its context
but also by its temporal position in that context relative to other
words. Perfetti (1998) has noted that the “lack of syntax is an
architectural failure [of LSA]” (p. 367). Although LSA can learn
much about document meanings without the benefit of word order
(Landauer et al., 1997), order information is certainly necessary for
a comprehensive model of word meaning and usage.

Constraints From Word Order

Solving the bag-of-words problem is the next major step in the
development of semantic space models. As well as providing
additional information about meaning, transition information de-
fines a word’s lexical class and grammatical behavior. So, to
amend Firth’s (1957) comment, you shall know a word by both the
company it keeps and how it keeps it.

Many models of sequential dependencies in language are based
on Miller’s (1951) notion of an n-gram (see also Miller & Self-
ridge, 1950).1 A classic n-gram model records the frequency of
occurrence of every possible word sequence chunk that it encoun-
ters in a textbase (there is usually a window of about seven words
around the target that are considered n-grams). To predict a word
in a new sentence position, the model looks up the frequency with
which the target word has been encountered as a bigram, trigram,
and so on during training. To be useful, n-gram models usually
need to be trained on massive amounts of text and require exten-
sive storage space for relatively little information.

More recently, the focus has been to identify and simulate the
generative rules of word transitions (inspired by the work of
Chomsky, 1965, 1980). Probabilistic methods (e.g., hidden
Markov models) infer the generative rules that could produce a
text corpus by observing transition statistics (for a modern exam-
ple, see Solan, Horn, Ruppin, & Edelman, 2005). Similarly, sto-

1 To be clear, n-gram in this article refers specifically to sequence
chunks of n words encountered during learning (the term is also often used
to refer to sequences of letters within a word).
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chastic context-free grammars (Booth, 1969) learn probabilities for
production rules from training data (e.g., Jelinek & Lafferty,
1991). Such models typically require supervised training on tagged
corpora (i.e., the part of speech or syntactic role of a word in a
sentence is hand coded by a human rater; e.g., Marcus, Santorini,
& Marcinkiewicz, 1993; Palmer, Gildea, & Kingsbury, 2005).

Where there are open questions regarding the exact nature of
representation for a word’s meaning, there is consensus that the
representation for a word’s grammatical usage is in the form of
rules or production systems. It follows that knowledge of word
meaning and knowledge of word usage are represented in different
forms and are stored separately from one another.

In the early 1990s, simple recurrent networks (SRNs; Elman,
1990, 1991, 1993, 1995; see also Servan-Schreiber, Cleeremans, &
McClelland, 1991) became promising at learning sequential de-
pendency information from artificial languages. An SRN is a
connectionist network that learns to predict temporal sequences
with a recurrent context layer that represents the network’s previ-
ous initial state as the hidden layer is given input for the present
state. Because the hidden layer’s state is affected by the hidden
layer state from the previous time step, which is in turn affected by
the state before it, SRNs can retain sequential dependency infor-
mation over several time steps (Elman, 2004).

In an SRN, the representation of a word’s meaning is the pattern
of activation across the hidden layer. However, this same infor-
mation is used when predicting transitions using the word. Thus,
SRNs afford the possibility that word meaning and word usage are
the same type of knowledge and may be stored together.

SRNs can predict the next word in a sequence (Elman, 1990),
can identify embedded structure (Elman, 1991) and recursion
(Christiansen & Chater, 1999), and can track limited long-range
dependencies (Elman, 1995). Unfortunately, SRNs have question-
able scaling properties. Although they function quite well on small
finite-state grammars, to date, none has scaled up to unconstrained
natural language (but see Burgess & Lund, 2000, and Howard &
Kahana, 2002, for similar large-scale models). In addition, SRNs
have difficulty retaining information over many time steps, and it
is questionable whether feedback is even necessary in an SRN
(Plate, 2003). Nonetheless, if SRNs can be scaled up to real-word
language problems, they provide a very appealing architecture.

With a random distributed representation for words, a simple
composite memory system can learn that particular words have
appeared together in a sentence or document with a composite
vector, formed by superposition (e.g., adding or averaging the
vectors for words in the sentence or document). Although a lexicon
built with one composite vector per word can theoretically learn
co-occurrence information, it cannot learn sequential information.
In a composite vector, one can no longer determine which features
(elements) go with which objects (original vectors)—this is re-
ferred to as the binding problem. Furthermore, there is no way to
determine the original ordering of the vectors from a composite
representation. The next section presents a binding operation,
adapted from signal processing and associative memory theory,
that preserves order and is a potential solution to the binding
problem.

A comprehensive model of the lexicon requires information
about both word meaning and word order, as well as an account of
how the sources of information are learned, represented, and
retrieved from memory. Merging a semantic space model with a

sequential dependency model is not a trivial task. However, pre-
cedents exist for fusing the two types of information in other
domains of memory theory.

Assuming that language is similar to other types of associative
stimuli, is it possible, as small-scale work with SRNs has sug-
gested, that knowledge about word transition is represented and
stored in the same manner as knowledge about word meaning? If
so, how much of the human data can be accounted for directly
from the structure of knowledge represented in this manner?
Operationalizing language as merely a complex type of sequential
dependency stimulus allows ideas to be borrowed from well-
established theory in associative memory.

Lessons From Associative Memory Theory

To model paired-associate learning, Murdock (1982, 1992,
1993) has successfully used convolution as a mechanism to form
associations between pairs of random vectors representing words
or objects. Convolution is basically a method of compressing the
outer-product matrix of two vectors and avoids the binding prob-
lem. Correlation (also called deconvolution) is an approximate
inverse that can decode convolution from the association back into
either of the parent representations when presented with one parent
representation in the environment.

For example, to associate item vectors x and y, one could
convolve them into a third vector, z, for storage: z � x * y. The
association vector may contain the superposition of several pair-
wise associations with minimal interference. At retrieval, the
memory vector z is probed with one item of a pair, and the other
item can be successfully reconstructed (in a noisy form) with
correlation: y # z � x. Convolution is associative and commuta-
tive, and it distributes over addition. Such convolution–correlation
memory models are often referred to as holographic models be-
cause they are based on the same mathematical principles as light
holography (see Plate, 2003, for a review).

Because convolution can code associative information between
vectors without losing track of which features belong to which
parent vector and the associative information can be stored in the
same composite memory representation as the item vectors them-
selves (e.g., Murdock, 1982), convolution appears particularly
appealing for encoding sequential information in language. In the
next section, we describe a model that uses convolution to encode
word order in language and apply the model to the large-scale
statistical structure in a text corpus. First, however, convolution
must be adapted into an encoding mechanism that is appropriate
for the structure of language.

Memory models predominantly use aperiodic (linear) convolu-
tion to bind together pairs of vectors. In aperiodic convolution, the
diagonals of the outer-product matrix are summed; this procedure
is illustrated in Figure 1. The convolution of x and y (both
n-dimensional vectors) produces a vector containing their associ-
ation, z, with 2n � 1 dimensions. The association cannot be
directly compared or added to the item vectors because it has a
larger dimensionality. To finesse the problem, many models pad
the item vectors with zeros to balance dimensionality (e.g., Mur-
dock, 1982) or simply truncate the association vector by trimming
the outside elements (z�2 and z2 in Figure 1) to match the dimen-
sionality of the item vectors (e.g., Metcalfe-Eich, 1982).
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Expanding dimensionality via convolution is a serious problem
for a sequential dependency model to be applied to language that
does not stop with binding successive pairs but proceeds recur-
sively to triplets, quadruplets, and so on. Both the padding and the
truncating solutions would still limit such a model to learning only
pairwise associations around the target word. To associate words
in a sentence, one must recursively bind together successive
n-grams, which produces a serious problem of expanding dimen-
sionality with successive bindings. Generally, convolving k vec-
tors, each having n dimensions, produces an associative vector
with kn � k � 1 dimensions. Hence, dimensionality of convolved
vectors rapidly expands with recursive aperiodic convolution.

Many systems in machine learning use tensor-product algebra to
bind together multiple vectors (e.g., Smolensky, 1990); however,
in addition to expanding dimensionality with higher order n-grams,
they also have an expanding rank problem. Thus, the association of
dog bit is represented as a second-order tensor product (a square
matrix), whereas the association of dog bit mailman is represented
as a third-order tensor product (a cube matrix). Because different-
order n-grams are represented by higher dimensional or rank
structures, they cannot be directly compared with either aperiodic
convolution or tensor algebra. Expanding dimensionality makes it
difficult to compare different-order n-grams or words with sen-
tence fragments. In addition, it cannot be known a priori how large
a dimensional structure will be required to encode a sentence.

To avoid the expanding dimensionality problem with recursive
convolution, we employ circular convolution, a technique used
extensively in image and signal processing (Gabel & Roberts,
1973; see also Plate, 1995, 2003, for examples in cognitive mod-
eling). The circular convolution of two n-dimensional vectors
produces an associative vector, also with dimensionality n, using
modulo subscripts.2 The operation of circular convolution is illus-
trated in Figure 2. The recursive circular convolution of several
vectors always has the same dimensionality as the original item
vectors and does not waste information by truncating elements.

Like aperiodic convolution, circular convolution is commutative
and associative and distributes over addition. It also produces
unique associations: The circular convolution of a vector, a, with
each of two unique vectors, b and c, produces two unique associ-
ation vectors. Thus, a �* b and a �* c are unique associations3 even
though both contain a (e.g., kick ball and kick table are unique,
assuming that ball and table are unique). It follows from this that
circular convolution has a uniqueness of n-grams property as well.
Thus, the bigram a �* b is unique from the trigram a �* b �* c.
Both associations can be directly compared because they have the
same dimensionality, but the higher order n-grams are different
sources of information than the lower order ones.

The commutative property of circular convolution does, how-
ever, create a problem for coding transitions in language because
a change in the order of two successively bound items cannot be
distinguished. For example, dog �* bite �* mailman and mailman
�* bite �* dog are very different ideas, but both produce the same
associative vector with convolution. To take advantage of the
asymmetric temporal structure of language, a binding operation
that is noncommutative is required (i.e., a �* b is unique from b �*
a). For computational efficiency, we use the noncommutative
permutation convolution proposed by Plate (1995). Plate suggested
that circular convolution could be made noncommutative by per-
muting the elements of the two argument vectors differently prior
to convolving them. The details of the directional operation are
outlined in Appendix A. The result is circular convolution that is
neither commutative nor associative but that still distributes over

2 In practice, a fast Fourier transform (FFT) convolution is computation-
ally more efficient. Convolution via FFT takes O(n log n) time to compute,
whereas the technique with modulo subscripts takes O(n2) time to com-
pute—this may result in a run time difference of days when trained on a
large corpus. Also, FFT lends itself to parallelization more easily.

3 �* denotes the operation of circular convolution.

Figure 1. Collapsing an outer-product matrix with aperiodic convolution, where x and y are the argument
vectors and z represents the resulting compressed vector from collapsing the outer-product matrix. The values
i and j represent the row and column indices, respectively, for an element in the outer-product matrix.
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addition and preserves similarity. Thus, a �* b and b �* a are
unique associations.

Statistical Structure in Language

In a sequential data stream, such as a sample of text, there are
four nonindependent sources of statistical information that can be
used to learn about words. Co-occurrence information about a
word is information about the word’s context, that is, the other
words that tend to appear with it in a context unit (phrase, sen-
tence, or document). Transition information, on the other hand, is
information about the position of a word relative to other words in
the context unit.

Both co-occurrence and transition information can come from
either direct or indirect statistical sources. Direct statistical infor-
mation comes from other words that have directly appeared in the
same context unit as a particular word. For example, in the sen-
tence “The robin flew down from the tree and ate the worm,” there
is a direct co-occurrence relationship formed between robin, flew,
and worm because they have all appeared together. However, there
is also an indirect (latent) co-occurrence relationship formed be-
tween robin, feathers, bird, and hawk, even though they may not
have directly co-occurred. This is because robin and feathers have
both appeared with flew even though robin and feathers have not
appeared together. Furthermore, robin, bird, and hawk frequently
appear around the same words, such as fly and feathers; this
indirect information forms a relationship between the three words
even if they have never directly co-occurred.

In the same sample sentence, direct transition relationships are
formed between robin and its surrounding words—the precedes
robin, flew succeeds it, and robin also appears in a trigram flanked
by the and flew. However, indirect transition information is also
being learned: Robin is similar to hawk and bee in that all three
words may have been found flanked by the and flew. Early in

learning, direct sources of information (both co-occurrence and
transition) are more important to learning word meanings; how-
ever, as more words are learned, progressively more information
can be learned from indirect sources (both co-occurrence and
transition).

The BEAGLE Model

In this section, we describe bound encoding of the aggregate
language environment (BEAGLE), a computational model that
builds a semantic space representation of meaning and word
order directly from statistical redundancies in language. We
first document how the model develops a distributed represen-
tation of meaning for words from contextual similarity and then
how the model can develop a representation of word order by
forming associations between words with vector convolution
(binding). Finally, we demonstrate how these two types of
information (word meaning and word order) can be learned
together as a single pattern of vector elements in a composite
lexical representation and how sequential dependencies can be
retrieved from the lexicon.

We assume that a word’s meaning and usage are a single pattern
of vector elements. This lexical representation is initially a random
pattern, and gradually, representation noise is reduced across ex-
perience as the word is sampled in different contexts and positions
within contexts. With sufficient samples, a stable central limit for
each vector element emerges, stabilizing the lexical pattern as a
whole. Depending on variability of a word’s meaning and usage in
language, more or fewer observations of the word are required to
converge on a stable lexical representation. Statistical noise reduc-
tion is a simple yet powerful mechanism for learning about a
word’s meaning and order information.

Borrowing terms used in associative memory (Murdock, 1982,
1992), information about word co-occurrence is referred to as

Figure 2. Collapsing an outer-product matrix with circular convolution, where x and y are the argument vectors
and z represents the resulting compressed vector from collapsing the outer-product matrix. The values i and j
represent the row and column indices, respectively, for an element in the outer-product matrix.
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context information and information about word usage—position
relative to other words in a sentence—as order information. Sim-
ilar to Murdock’s (1982, 1992) models, context information comes
from vector addition, and order information comes from vector
convolution.

BEAGLE processes text one sentence at a time, learning context
and order information for each word before proceeding to the next
sentence. Front-end routines are used to parse text into discrete
units of meaning, where a unit is usually a sentence (other types of
punctuation, such as semicolons and parentheses, are also inter-
preted as marking a complete unit of meaning).

Across many sentences, the representation of a word becomes
similar to the representation of words that frequently co-occur in
sentences with it and to those words that frequently occur in
similar contexts. For example, the representation of robin is sim-
ilar to the representation for fly because the two frequently co-
occur in the same sentence (a direct relationship). However, robin
is also similar to hawk even though the two may never have
co-occurred in the same sentence. This is because robin and hawk
both tend to co-occur in contexts with similar words, such as fly
and feathers (an indirect or latent relationship). In addition, robin
and hawk share order similarity in that they are often used in
similar positions relative to other words in their respective sen-
tences. Robin and hawk have shared order information, as do fly
and sing, but robin and sing do not have shared order information.

Representation

Words are represented by high-dimensional holographic vec-
tors. The first time a word is encountered, it is assigned a random
environmental vector, ei. Environment vector elements are sam-
pled at random from a Gaussian distribution with � � 0 and
� � 1/�D, where D is the vector dimensionality. Each subsequent
time the same word is encountered, the same environmental vector
is used in coding context and order information; thus, a word’s
environmental representation does not change. A word’s memory
(lexical) vector, mi, however, changes each time the word is
encountered in a new context unit. Each time a word is encoun-
tered, its environmental vector is used in the coding of its new
context and order information, and this new information is added
to mi. The environmental vectors are intended to represent the
physical characteristics of words in the environment (e.g., orthog-
raphy, phonology, etc.), whereas the memory vectors represent
internal memory for contexts and positions in which the environ-
mental vectors have been encountered. At this point, we are
agnostic about the actual environmental features for words; hence,
we assume no structural similarities between words and represent
each with a different random representation. Environment vectors
are generated at random the first time a word is encountered, so
each word is physically unique from other words in e. By unique-
ness, we specifically mean that the expected cosine between any
two vectors is zero. To add structural similarities between words,
the e matrix could be generated to reflect known structural simi-
larities between words (see Heiser, 1988; Van der Heijden, Mal-
has, & Van den Roovaart, 1984), but that is not the focus of the
present work.

Learning Context Information

The context information for a word in a sentence, ci, is the sum
of the environmental vectors for the other n � 1 words in the
sentence:

ci � �
j�1

n

ej, where i � j. (1)

Context vectors are computed for each word in the sentence. A
word’s lexical representation, mi, is then updated by adding the
new context information to it:

mi � mi � ci. (2)

For each sentence a word is encountered in, the new context
information is constructed from the environmental vectors of the
other words in the sentence, and the lexical representation is
updated by adding the new context vector to it. A word’s lexical
representation is, thus, a superposition of vectors that reflects the
word’s history of co-occurrence with other words within sen-
tences.

High-frequency function words (e.g., the, a, of) can pollute a
lexical representation formed in this way because they frequently
co-occur in sentences with many words. For example, the lexical
vector for dog could be most similar to the lexical vector for the
simply because the two always co-occur in the same sentence.
With large enough dimensionality, the may be a near neighbor of
almost every word.

We have used continuous entropy functions to allow the model
to degrade the contribution of high-frequency function words
gracefully as it learns that they tend to appear often and in many
different sentences. These functions do not require any a priori
knowledge of word frequency. For large-enough text samples, an
entropy function can learn which words in the sentence contribute
useful semantic information and can approximate the outcome that
would be observed if word frequencies were known a priori. For
computational efficiency, however, the simulations reported here
employ a standard stop list of 280 function words in the calculation
of context information. If a word appears in the stop list, it is
omitted from the calculation of context information. Stop lists of
this sort are commonly used in corpus-based models of semantics
(e.g., A. E. Smith & Humphreys, 2006; Steyvers & Griffiths, in
press; etc.).

As an example of context information, consider coding the word
dog in the sentence “A dog bit the mailman.” The context infor-
mation would be the sum of the vectors for the other words in the
sentence, without the stop list words a and the:

cdog � ebit � emailman.

The context of dog in this sentence is the superposition of the
words bit and mailman. This new sentence information is then
added to mdog, which may already contain past superimposed
vectors, perhaps tail, wag, fetch, and so on.

A direct relationship has been formed between dog, bit, and
mailman because they have some of the same random information
summed into their lexical representations. For example, the con-
text information for bit and mailman in the same sentence is

6 JONES AND MEWHORT



www.manaraa.com

cbit � edog � emailman,

and

cmailman � edog � ebit.

What is less obvious is that a latent relationship in the lexicon is
also being formed between dog and wolf: Although the dog is
biting the mailman in one region of the corpus, the wolf is biting/
chasing/attacking a deer/hunter in another. The more often dog and
wolf are found in separate sentences doing similar things, the more
similar their lexical representations become to each other. The
more frequently two words share context (either directly or indi-
rectly), the more common random vectors are summed into their
lexical representations and, hence, the more similar their lexical
representations become to one another.

Before we describe the coding of order information in BEAGLE,
we first provide examples of the semantic structure that emerges
from this simple vector superposition algorithm when applied to
real-world language. For the simulations reported here, vector
dimensionality was set to 2,048, and 90,000 words were learned
into the lexicon. The model was trained on the TASA corpus
(compiled by Touchstone Applied Science Associates; see Land-
auer et al., 1998), which contains a collection of English text that
is approximately equivalent to what the average college-level
student has read in his or her lifetime. TASA is the same corpus on
which the Web version of LSA is trained.4

Table 1 illustrates some nearest neighbors and their similarities5

to various target words (target words are capitalized) in the lexical
space when trained on the TASA corpus with only context infor-
mation. There were 90,000 words learned in total; the table dis-
plays only a sample of structure from the lexicon. As the table
shows, vectors representing semantically similar words have de-
veloped similar patterns of elements as a function of shared con-
text. Some of this co-occurrence information comes from direct
relationships and some from indirect relationships.

The lexicon can also be thought of as a multidimensional space,
with similar vectors being more proximal in the space and dissim-
ilar vectors being more distant. Figure 3 shows a two-dimensional
scaling plot of various financial, science, and sports terms learned
from the textbase. Initially, there is chaotic structure in this space,
with the words positioned randomly around the origin (the cross
hair). With textbase experience, however, structure forms from the
accumulation of common random vectors in each lexical repre-
sentation. For example, the financial terms become similar to one
another and distinct from the science terms and sports terms.
Although soccer, baseball, and football may never have directly
co-occurred with one another, they have had some of the same
random information summed into their lexical representations,
such as player, sport, and ball. Sentences and documents can also
be plotted in terms of their proximity to concepts.

Random vector accumulation is a simple yet powerful method
of acquiring semantic representations for words from contextual
co-occurrence. The representations gradually form structure from
initial randomness via noise reduction across experience. As men-
tioned previously, however, co-occurrence information is not the
only source of statistical information from which a word’s mean-
ing can be induced. Transition information about a word defines its
lexical class and grammatical behavior as well as contributing to
its meaning. Transition information has been absent from most
semantic space models, and the addition of this information may
benefit semantic space accounts in a variety of tasks.

We used random vector accumulation because it allows the
model to learn co-occurrence into a fixed-dimensional representa-
tion, whereas representation dimensionality in other semantic
space models depends largely on the input matrix and the optimi-

4 We are grateful to Tom Landauer for providing the TASA corpus.
5 Similarity in this article refers specifically to the cosine of the angle

between two vectors (a normalized dot product).

Table 1
Examples of Nearest Neighbors to Various Target Words in Context Space

COMPUTER HOSPITAL HEART COGNITIVE LEXICAL BEER

data .81 doctor .68 artery .72 development .62 syntactic .51 wine .56
computers .68 medical .65 vessels .71 child .57 semantic .44 liquor .54
processing .68 nurse .63 pumps .71 intellectual .55 prefixes .43 whiskey .53
processed .62 patients .62 arteries .69 learning .54 derivational .42 drinks .47
storage .62 patient .62 blood .68 stages .51 context .42 alcohol .42
program .61 emergency .59 veins .66 research .49 meaning .41 drink .40
programmer .61 care .59 circulation .65 personality .49 meanings .40 alcoholic .40
microcomputer .61 clinic .57 pumping .63 piaget’s .47 suffixes .39 vodka .40
keyboard .60 doctors .55 clot .62 piaget .47 inflectional .39 ethyl .37
memory .60 nursing .53 clotting .61 psychological .47 synonym .37 rum .37
input .60 physician .53 aorta .61 psychologists .47 word .37 beverage .35
user .59 ward .52 capillaries .59 behavior .46 words .35 bottle .35
cpu .58 call .51 transfusion .58 skills .46 convey .35 depressant .33
electronic .58 hospitals .51 vessel .57 theory .45 dictionary .34 ethanol .33
information .58 inpatient .51 arterial .57 understanding .45 grammatical .34 sipped .32
software .57 surgery .50 ventricles .56 concept .45 connotation .33 cola .32
disk .56 office .49 beat .56 communication .45 denotation .33 intoxicated .31
computing .56 birth .48 liver .55 education .45 morphemic .33 tasted .30
digital .55 ambulance .48 heartbeat .55 motivation .44 mythos .33 lemonade .30
analyze .53 sick .48 hypertension .53 knowledge .44 phrase .32 pint .29

Note. Numbers following neighbor words are vector cosines.
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zation criterion. Using the circular convolution operation described
previously, we can now represent a word’s order history in the
same fixed dimensionality and can merge the two types of infor-
mation into a unified representation.

Learning Order Information

A word’s order information is calculated by binding it with all
n-gram chunks in the sentence that include it. Binding in BEAGLE
is accomplished via directional circular convolution. The position
of the word being coded is represented by a constant random
placeholder vector, � (sampled from the same element distribution
from which the environment vectors were constructed). Phi is
fixed across learning. This method uniquely codes associations for
the bigram, trigram, quadgram, and other such neighbors around
the word. The n-gram convolutions are unique from one another
even if they contain many of the same words. The order informa-
tion for a word in a sentence is the sum of all the n-gram
convolutions to which it belongs. Because circular convolution is
used, all n-grams are represented in the same dimensionality, and
hence, they can all be summed into a single order vector, oi, which

represents the word’s associative position relative to the other
words in the sentence:

oi � �
j�1

p��	 p2�p
�1

bindi,j, (3)

where p is the position of the word in the sentence, and bindi,j

is the jth convolution binding for the word being coded. The
word’s order vector is then added to its lexical vector (as was
the context vector), which becomes a pattern of elements rep-
resenting the word’s position relative to words in all sentences
learned.

Lambda (�) is a chunking parameter that sets the maximum
neighbors a word can be bound with (because the number of
possible n-grams increases as a nonlinear function of position and
sentence length). Lambda is not a theoretical limit but, rather, a
practical one. The number of possible convolutions becomes un-
manageably large in very long sentences. Computing all possible
convolutions can drastically increase compute times, and very-
high-order n-grams are unlikely to contribute generalizable order

Figure 3. An example of word clustering in a subset of the context space with financial, science, and sports
concepts.
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structure.6 For the simulations reported here, lambda was set to
seven after Miller and Selfridge’s (1950) classic experiments with
order of approximation to English.

As an example, consider coding the order information for the
word dog in the sentence “A dog bit the mailman.” Because
function words are very important to syntactic structure, no stop
list or entropy weighting is used in the calculation of order infor-
mation. The order information for dog would be all of the n-gram
bindings around it.

binddog,1 � ea �* �
binddog,2 � � �* ebit

�Bigrams

binddog,3 � ea �* � �* ebit

binddog,4 � � �* ebit �* ethe
�Trigrams

binddog,5 � ea �* � �* ebit �* ethe

binddog,6 � � �* ebit �* ethe �* emailman
�Quadgrams

binddog,7 � ea �* � �* ebit �* ethe �* emailman}Tetragram

odog � �
j�1

7

binddog,j

Each of the n-gram convolutions produced is unique, and each
pattern is stored in the o vector with superposition. In the above
sentence, the trigram convolution for a dog bit is unique from the
bigram convolution for a dog; higher order n-gram associations are
different from their lower order constituents.

For example, binddog,1 codes the bigram association of a im-
mediately preceding the word being coded (dog). Furthermore,
binddog,2 records bit immediately succeeding the word being
coded, and binddog,3 codes the trigram association that the word
being coded appeared flanked by a on its left and bit on its right.
Even though the trigram a dog bit contains the bigrams a dog and

dog bit, the trigram association vector is unique compared with
either of its bigram constituents. All of the above convolutions are
unique from one another, but because circular convolution is being
used as the coding operation, they compress into the same dimen-
sionality and can all be summed into a single-order vector that
represents dog’s position in this sentence relative to the other
words. This o vector is then added to dog’s lexical representation,
which contains the position of dog relative to other words in all
sentences learned.

The lexical representation thus acquires a pattern of elements
that reflects the word’s history of position association with other
words in sentences. As text is experienced, more common associ-
ations become stronger (from superposition), and less common
associations are dampened. This produces a natural weighting in
the lexicon where lower order n-grams are more important to a
word’s order history than higher order n-grams simply because
lower order n-grams are more likely to be consistently encountered
as stable chunks across experience.

To demonstrate the structure learned by the convolution order
algorithm, Table 2 shows some nearest neighbors to various target
words (target words are capitalized) in the lexicon when trained on
TASA with order information only (2,048 dimensions and 90,000
words). It is clear from the table that a different pattern of structure
has emerged with the order-encoding algorithm, namely, lexical
classes. An action verb, such as went, is most similar to other
action verbs and gradually to other types of verbs. A locative, such
as below, is most similar to other locatives and then to some
temporal prepositions. A near neighbor to a noun is unlikely to be
a verb in this space, as was possible in the context space.

6 Information about long-distance dependencies in sentences can be
bootstrapped from the context information.

Table 2
Examples of Nearest Neighbors to Various Target Words in Order Space

MIKE SIX WENT BELOW HER MINUTES

dan .86 eight .68 ran .84 above .86 his .89 seconds .88
tom .84 five .65 came .84 beneath .84 my .83 moments .76
pete .83 seven .63 rushed .83 under .83 their .79 hours .63
ben .83 four .62 hurried .82 beyond .83 your .76 weeks .62
grandpa .83 nine .62 returned .80 across .83 its .75 days .59
jeff .83 ten .59 goes .79 near .82 the .73 months .59
ted .82 three .59 walked .77 on .82 our .72 inches .55
jim .82 twelve .57 moved .77 against .82 them .69 milliseconds .55
tim .82 eighteen .55 continued .77 through .82 him .66 innings .47
charlie .81 twenty .53 began .77 behind .82 me .64 yards .42
pam .81 thirty .53 proceeded .76 around .82 a .63 decades .42
dad .81 forty .52 clung .76 on .81 myself .61 beers .41
tommy .81 two .51 refused .75 in .81 herself .60 paces .41
joe .80 fifteen .51 fell .75 between .80 himself .60 cents .40
dave .80 several .51 rode .75 throughout .80 whom .59 ounces .40
bobby .79 eleven .50 drove .75 inside .79 an .59 years .39
jack .79 seventeen .49 appealed .74 within .79 these .58 centimeters .37
danny .78 fifty .48 sought .73 upon .78 any .57 spoonfuls .36
woody .78 twentyfive .48 liked .72 before .76 yourself .57 bites .35
andy .77 fourteen .48 listened .71 among .76 this .57 centimetres .35

Note. Numbers following neighbor words are vector cosines.
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Figure 4 shows a two-dimensional scaling plot for four parts of
speech: nouns, locatives, verbs, and determiners (clockwise from
top group). The shaded regions show expansions of dense areas.
Because of similar associations during learning, words that are
commonly found in similar positions relative to other words have
developed similar patterns of vector elements; that is, they have
had common random vectors convolved into their lexical repre-
sentations. Some of this transition information comes from direct
relationships, and some comes from indirect relationships. Note
that the relationships learned from order information are very
different from those learned from context information, and a
comprehensive model should be able to consider both types of
information together.

Contextual and Order Information Together

For demonstrative purposes, we have described the structure
learned from context and order information separately. In practice,
BEAGLE codes context and order information into the same

lexical vector for a word each time it is encountered in a new
context unit.7

mi � mi � �
j�1

N

ej � �
j�1

p��	 p2�p
�1

bindi,j (4)

� mi � ci � oi. (5)

The composite lexical vector contains the superposition of a
word’s context and order information across all the sentences in
which it has been experienced. This composite representation has
the powers of both context and order information together: It
contains semantic and associative information, and a word’s

7 The vectors representing context and order information are each nor-
malized to a length of one prior to averaging; otherwise, one type of
information may overpower the other depending on sentence length.

Figure 4. An example of word clustering in a subset of the order space with nouns, prepositions, verbs, and
determiners (clockwise from top). The gray regions show expansions of the dense neighborhoods.
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position information can be retrieved from the order information
(demonstrated in the next section) given the context of surrounding
words.

Figure 5 shows scaling plots that demonstrate the organization
between words learned by the context (see Figure 5A) and order
(see Figure 5B) mechanisms using the same words. For the context

information (see Figure 5A), verbs are proximal to the nouns upon
which they operate. For example, food is related to eat, car is
related to drive, and book is related to read, but eat, drive, and read
are not highly related to one another, nor are food, car, and book.
The context information accounts for primarily semantic associa-
tions.

Figure 5. A: A subset of nouns, verbs, and adjectives in the context-only space; in context space, verbs are
proximal to the nouns they operate upon from similar contextual experience. B: The same words in the
order-only space; in order space, parts of speech form proximal clusters from similar experience.
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By contrast, Figure 5B shows the structure of the same words as
learned by the order algorithm (using convolution). In order space,
words that appear in similar positions relative to other words in
sentences have developed similar patterns from accumulation of
common association vectors. Drive, eat, and read are now all
proximal to one another and cluster distinctly from the nouns (car,
food, and book now being similar to one another). In the context
space, the adverbs are close to their verbs (e.g., quickly and slowly
are proximal to drive). In the order space, however, the adverbs
have formed their own cluster. The context algorithm has learned
semantic relationships, whereas the order algorithm seems to have
learned information about lexical classes. Semantic class informa-
tion is also represented in the order space: Although nouns are
distinct from verbs, within nouns, animates tend to be distinct from
inanimates. Within animates, for example, fish cluster together,
and birds cluster together. In the context space, however, fish also
cluster with gills and swim, and birds cluster with wings and fly.
Contextual and order information complement each other.

Table 3 shows the top 12 neighbors (and their cosines) to eat,
car, reading, and slowly in the full versions of each space (i.e.,
using all words in the lexicon). For verbs such as eat or reading,
the neighbors in context space are predominantly semantic asso-
ciates, whereas the neighbors in order space are similar verbs. It is
interesting to note that the nearest neighbors in the composite
space may not necessarily be close to the target in either context or

order space alone. The organization in the composite space often
emphasizes higher order semantic relationships, for example, the
idea that eat is related to grow or that reading is related to
understanding (neither grow nor understanding is on the list of top
neighbors in context or order space alone).

Retrieving Order Information From the Lexicon

In BEAGLE, order information is incorporated into context
information to produce a higher fidelity representation of word
meaning. As a by-product of using convolution as an order-binding
mechanism to represent associative position of the word in sen-
tences, the order information can also be retrieved from the lexical
representations, allowing the model to predict word transitions in
sentences from its learned history (without explicitly coded rules
of grammaticality or transition).

Coded into a word’s lexical representation is its preferred posi-
tion relative to other words it has occurred with in sentences. This
information may be retrieved from the lexicon in two ways: Order
information may be decoded from lexical representations to deter-
mine words that are likely to precede or succeed a given order
context, or an order pattern may be compared with the lexicon to
determine which lexical entries resonate with it (i.e., which words
have been learned in the order context with a high frequency).
Decoding retrieves an instance from the learned associative infor-

Table 3
Twelve Nearest Neighbors to Eat, Car, Reading, and Slowly in Context, Order, and Composite Spaces

EAT CAR

Context Order Composite Context Order Composite

eaten .85 buy .91 feed .76 driver .72 boat .95 truck .80
eating .81 get .90 grow .71 drive .71 ship .94 road .76
food .70 sell .89 produce .70 driving .68 truck .94 driver .75
hunt .67 move .89 die .68 road .67 house .93 bus .75
digest .65 save .89 digest .68 drove .67 bus .93 train .73
ate .65 sleep .88 kill .67 wheels .67 computer .93 garage .73
grow .64 keep .88 chew .66 truck .67 fire .93 highway .72
need .64 swallow .88 survive .66 seat .63 train .93 house .71
foods .63 avoid .88 hunt .66 drivers .62 bank .92 street .70
plants .62 win .87 provide .66 parked .60 camera .92 fire .70
insects .60 catch .87 cook .65 cars .59 ball .92 horse .70
nutritious .60 produce .87 preserve .65 street .59 dog .91 wagon .69

READING SLOWLY

Context Order Composite Context Order Composite

read .73 writing .73 writing .72 quickly .67 quickly .70 quickly .68
book .70 making .66 learning .57 turned .62 carefully .53 rapidly .52
books .68 studying .63 studying .56 walked .60 rapidly .52 suddenly .50
reading .63 teaching .60 understanding .55 moved .59 freely .47 moved .48
facts .62 planning .60 books .53 moving .58 easily .47 turned .48
readers .62 describing .60 teachers .53 left .58 quietly .46 running .47
authors .61 using .59 mathematics .53 saw .57 swiftly .45 walked .47
write .60 cutting .58 speech .52 move .56 clearly .45 reached .46
words .59 seeing .57 comprehension .51 suddenly .56 suddenly .44 stopped .46
comprehension .58 taking .57 skills .51 reached .55 costly .43 carefully .46
learn .58 selecting .57 information .50 close .55 softly .43 rose .45
library .57 watching .56 language .49 street .55 efficiently .42 left .45

Note. Numbers following neighbor words are vector cosines.
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mation in a holographic vector with inverse convolution and
compares the retrieved instance with the environment to determine
goodness of fit. Resonance, on the other hand, compares an asso-
ciative instance in the environment with memory to determine
which memory vectors are highly excited by the pattern. The
specific details of encoding and decoding in BEAGLE are detailed
in Appendix A.

Retrieving order information by decoding. Learned items may
be decoded from the order information in a lexical representation
using inverse circular convolution (a.k.a., circular correlation), y �
x �# z:

y � �
j�0

n�1

xjmodn � z(i�j)modn.

For example, to predict the next word in a sequence from the
lexicon, information is decoded from the lexical representations
for the words in the sequence so far. The retrieved vector is a noisy
version of the environmental vector for the most likely next
transition in the sequence, given the preceding transitions.

Partially because convolution throws away some information,
partially because composite compression introduces noise, and
partially because correlation is only an approximate inverse to
convolution, the decoded vector is a noisy version of its original
form.8 Nonetheless, the retrieved vector has a higher cosine with
its original environmental form than with any of the other envi-
ronment vectors (see Murdock, 1982, 1993, for characteristics of
convolution–correlation and retrieval facsimiles).

For example, consider martin luther king jr, a frequently occur-
ring and fairly unique chunk in the TASA corpus. The lexical
vectors for martin, luther, king, and jr have relatively little other
associative information coded into them because they frequently
appear as a stable chunk (with the exception of king, which appears
in many other name chunks as well). Decoding mluther to the left9

retrieves a facsimile of emartin, and decoding mluther to the right
retrieves a facsimile of eking.

Figure 6 illustrates the similarity of the vectors decoded from
mluther (either right or left) to all 90,000 environmental vectors
used in learning. Figure 6A shows the cosine of all environmental
vectors e1..N to the vector retrieved by decoding mluther to the right
(i.e., words that succeeded luther). The retrieved vector most
clearly resembles the environmental vector for eking that was
learned to succeed luther and is only randomly similar to the
89,999 other environmental vectors. By contrast, Figure 6B shows
the cosine of all environmental vectors to the vector retrieved by
decoding mluther to the left (i.e., words that preceded luther). The
retrieved vector most clearly resembles the environmental vector
for emartin that was learned to precede luther and shows only
random similarity to the others. From the same lexical represen-
tation of mluther, different directional associations can be decoded.

As more n-grams are included in the probe, the decoded re-
sponse is more constrained. For example, the fidelity of the vector
retrieved in its similarity to eking increases as consistent words are
added because there are more sources to decode from. Given luther
____, only mluther can be used to decode from. However, given
martin luther ____, the blank position can be decoded from mluther

but also from mmartin, given that luther must be in the intervening
position between martin and the position being predicted.

Given martin luther ____ jr, the blank position can be further
estimated by decoding mjr backwards. Adding context around a
word can either modify the retrieval if it changes the order con-
straint or emphasize a word if it is consistent with the information
retrieved from the other memory vectors. If the words all agree on
what word should be retrieved (i.e., luther ____ and martin luther
____ both agree that eking should be retrieved), then the fidelity of
the retrieved vector to eking simply increases. For example, given
luther ____, martin luther ____, and martin luther ____ jr, the
similarity of the retrieved vector to eking increases to .45, .65, and
.70, respectively, as the additional words are added around the
position being decoded. The specifics of decoding are described in
detail in Appendix A.

Retrieving order information with resonance. As demon-
strated in the previous section, order information may be decoded
from a specific lexical trace. However, order information is also
distributed across the lexicon. For example, in learning the se-
quence “A dog bit the mailman,” the transition information for dog
bit is stored in the lexical entry for dog, mdog � mdog � (� �* ebit).
However, information about the same transition is also stored in

8 Correlation is more stable in a system with noise than is retrieval with
the exact inverse (Plate, 2003).

9 TASA contains no information about king luther.

Figure 6. Cosine between decoded vectors and all 90,000 environmental
vectors used in learning. A: Similarity of the vector decoded from luther in
the succeeding position. Clearly, this decoded vector is most similar to the
environmental vector representing king. B: Similarity of the vector decoded
from luther in the preceding position. This decoded vector is most similar
to the environmental vector representing martin. Forward and backward
associations can be decoded from the same lexical representation.
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the lexical vector for bit, mbit � mbit � (edog �* �). Furthermore,
the same bigram transition is simultaneously stored in mailman as
part of a larger chunk (edog �* ebit �* ethe �* �). Transition
information is distributed across lexical entries, and various lexical
vectors may assist in retrieving order information when presented
with a particular sequential pattern.

To determine which lexical entries are highly activated by a
position in a sentence or fragment, the n-gram convolutions around
the position are built and summed into a probe vector, as in
learning (the position is replaced by the placeholder vector �).
Lexical vectors that have been frequently found in the vacant
position during learning resonate with the order vector for that
position because many of the n-gram tokens for the vacant position
also fit their order histories.

Resonance is the tendency of an object to absorb more energy
when the probed frequency matches the object’s natural frequency
than it does at other frequencies. For example, when a tone is
sounded by a piano, strings resonate depending on the match of
their natural frequencies to the pitch of the tone. Resonance is used
as a metaphor to describe the lexicon’s response to a probe:
Similar lexical vectors resonate with the order probe depending on
the amount of shared variance they have with it. Holographic
lexical vectors, however, may have several resonant frequencies

coded within them, responding to several possible input patterns
depending on the word’s learned history.10

For example, when the vector � �* ethomas (the words that
preceded thomas) is compared with the lexicon, mdylan is the most
similar lexical vector (cos � .34), with all others responding with
no more than random similarity. When the vector ethomas �* �
(words that succeeded thomas) is compared with the lexicon,
however, many lexical vectors respond (jefferson [.52], aquinas
[.43], edison [.38], etc.) because they all have the particular pattern
coded into their representations, whereas only mdylan has the
pattern � �* ethomas coded into its representation.

Figure 7 illustrates lexical resonance and the asymmetric nature
of retrieval. Figure 7A shows the cosine of each lexical vector
m1..N in response to the probe vector eabraham �* � (i.e., words that
have been preceded by abraham). mlincoln rises out of the lexicon
in resonance with the probe vector; maslow and lipster also reso-
nate, although less so. The other lexical representations remain

10 Although it often has many other names (homophony, chorus of
instances, etc.), resonance is a popular metaphor when describing memory
retrieval (e.g., Brooks, 1978; Hintzman, 1984; Kwantes, 2005; Mewhort &
Johns, 2005; Ratcliff, 1978; Semon, 1909/1923).

Figure 7. The state of the lexicon when probed with a vector: succeeding abraham (A), succeeding new (B),
preceding lincoln (C), and preceding york (D).
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only randomly excited by the probe vector. By contrast, Figure 7C
shows the state of the lexicon in response to the probe vector � �*
elincoln (i.e., words that have been succeeded by lincoln). Although
lincoln responded as the predominant trace to follow abraham (see
Figure 7A), abraham is not the only trace that precedes lincoln;
president and abe are also excited by the pattern � �* elincoln.
Furthermore, mpresident responds preceding a number of other
words (kennedy, carter, etc.).

The asymmetric behavior is further illustrated in Figures 7B and
7D. In Figure 7D, only mnew resonates with the pattern preceding
eyork. By contrast, Figure 7B shows the state of the lexicon in
response to the pattern succeeding enew. Although new was the
only word that preceded york, many words respond that want to
succeed new, york being among them. Table 4 further demon-
strates the asymmetric nature of resonance in the lexicon with
nearest neighbors (and their cosines) to sample target words.

Resonance may be used to probe the lexicon with longer and
more general order patterns as well. For example, for the phrase he
____ to, the encoding vector [(ehe �* �) � (� �* eto) � (ehe �* �
�* eto)] is compared with the lexical vectors m1..N, and each cosine
is computed. Words that were frequently experienced in the blank
position during learning, given the order context of the surround-
ing words, have a higher relative cosine with the order vector. The
eight most highly activated words by the probe he ____ to are
refused (.59), went (.57), came (.55), seemed (.53), said (.52), had
(.52), likes (.51), and wanted (.50).

Table 5 shows the eight most highly activated lexical represen-
tations for various other phrases. The first column shows words
highly excited by he ____. It is interesting to note that the verbs
most highly activated by only the bigram information in he ____
are quite different from those in the constrained he ____ to even
though the latter contains the same bigram that constitutes the
former. Verbs that fit he ____ were found in that bigram with a
high frequency; given bigram information only, simple verbs that
have been found as successors to he and that have not been found
in extremely variable contexts match. When he ____ to is pre-
sented, however, simple verbs that fit the bigram information in he
____ now do not fit the trigram because they are rarely found
flanked by both he and to. The activation rank ordering of went
increases from he ____ to he ____ to to he ____ to the because

went progressively fits all of the n-gram convolutions as they are
added.11

Generally, the more n-grams in a probe that fit a word’s history
of order information, the more constrained the model’s response is.
For words that do not appear in many different contexts during
learning, it is possible to retrieve the exact word that was learned
in a particular probe. Table 6 shows exact phrases learned from the
TASA corpus. The italicized word (e.g., brainstem) was removed
from the probe, and its position was predicted from the lexicon
using only order information; the top six words activated by the
various probes are displayed.

For example, “The brainstem is much larger and more complex
than the spinal cord” is an exact sentence learned from TASA.
Brainstem is obviously not the most likely response to follow the
when only the bigram association is considered even though it is a
possible response to follow the. As more surrounding words are
added around the blank position, the candidate words with higher
relative activations become more constrained. When the entire
sentence is presented, brainstem is the best fit to all the n-grams in
the probe, and there is considerable difference between the most
highly activated word, brainstem (.37), and the other words. Ad-
ditional n-grams can add signal to appropriately fitting words and
noise to inappropriate ones. It is important to note that this retrieval
demonstration considers only order information, but taking advan-
tage of context information (meaning in the sentences independent
of order) can further constrain the responses.

For more frequent words that have been found in many contexts,
the exact word cannot be retrieved even when presented with an
exact sentence in which it was learned. However, the most highly
activated words become more plausible. In the full phrases of
Table 6, few candidate words other than the target plausibly fit the
probe, and the correct target is the best fit. Table 7 shows some
exact phrases from TASA in which the correct target cannot be

11 Note that the activation for a word does not necessarily increase
linearly as n-grams may be fit (as with went). A word’s activation may
actually decrease with additional appropriate n-grams even though its
activation rank order may increase. The additional n-grams may add noise,
but they add less noise to appropriately fitting words and more noise to
words that do not fit the positional information.

Table 4
Top 10 Lexical Representations Resonating to a Binding Preceding or Succeeding a Target Word

KING PRESIDENT WAR SEA

� king king � � president president � � war war � � sea sea �

luther .33 midas .51 vice .46 eisenhower .40 precivil .43 ii .51 sargasso .37 urchins .50
barbaric .29 lear .47 taftlike .25 kennedy .36 civil .35 veterans .38 caspian .35 gull .49
burger .28 henry .47 literalist .24 reagan .31 spanishamerican .35 material .25 aegean .31 anemone .44
seventyyearold .25 pellinore .46 poliocrippled .18 nixon .28 revolutionary .29 ended .25 mediterranean .30 otter .39
etruscan .24 minos .45 incumbent .17 carter .28 korean .28 chariots .22 baltic .29 anemones .39
legendary .23 farouk .44 twentyseventh .17 johnson .27 trojan .28 hawks .21 adriatic .28 otters .36
hanoverian .22 dionysius .42 thirtyfifth .17 truman .25 francoprussian .28 raged .19 sharkfilled .27 captains .34
thirteenthcentury .20 tut .40 democratic .16 lincoln .25 world .27 broke .18 aral .25 urchin .34
battlescarred .19 arthur .31 middleoftheroad .15 lyndon .25 vietnam .26 seesawed .17 carribean .20 lamprey .31
rex .12 agamemnon .31 overrode .15 roosevelt .18 declare .25 aims .15 barents .19 cucumber .28

Note. Numbers following lexical representations are vector cosines. � represents the constant placeholder vector used during encoding.
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retrieved; the most highly activated words are the lexicon’s best
attempt to fit the position given that the exact instance in memory
has been lost because of averaging.

When a word has been experienced only a small number of
times, it is possible to retrieve exact order instances in which it was
learned. As a word is experienced more frequently in different
contexts, however, ability to retrieve exact instances diminishes,
but the abstracted representation become more generalizable be-
cause of averaging. Lexical representations undergo an instance-
to-abstraction transformation in memory with experience. This
does, however, increase the reliance on lower order n-grams for
more frequent words. For example, the final two probes in Table
7 demonstrate that BEAGLE can make the error of overempha-

sizing lower order chunks with order retrieval, as n-gram models
do. The responses of associate and interact in the ball sentence are
driven by the lower order n-grams and miss information about the
object being an inanimate noun. Augmenting order retrieval with
position-independent semantic information can help to ameliorate
this bias.

Retrieving with both decoding and resonance. When an order
probe is presented, information about unknown positions may be
estimated from the surrounding context of known words and from
learned experience of word transitions. The unknown information
may be decoded from the learned history of the words present in
the probe. Simultaneously, the transitions in the probe may be
compared with the entire lexicon to determine which words have

Table 5
Eight Most Highly Activated Words in Various Blank Positions

he � he � to the he � not the � is

said .73 went .59 did .64 latter .58
had .61 came .56 could .54 world .56

asked .59 gestured .50 does .52 worry .55
was .56 clung .49 had .45 problem .54

exclaimed .52 said .48 dared .43 sun .53
went .51 presented .47 was .35 cerebrum .53
cried .50 listened .45 is .34 earth .53
kept .50 belonged .44 should .33 truth .52

Note. Numbers following activated words are vector cosines. � represents the constant placeholder vector used during encoding.

Table 6
Six Most Highly Activated Words in a Position as the Context of Neighboring Words Is
Expanded

Phrase Activations

the [brainstem] first (.95) best (.93) latter (.92)
next (.90) same (.89) following (.94)

the [brainstem] is latter (.58) following (.54) same (.54)
first (.53) world (.53) best (.53)

the [brainstem] is much larger and more complex than
the spinal cord

brainstem (.37) latter (.22) world (.20)
epidermis (.19) following (.19) same (.18)

although [ostriches] arguably (.26) profit (.20) single (.17)
double (.17) moderate (.17) thorough (.16)

although [ostriches] cannot wastefulness (.18) quasars (.17) prison (.16)
prayer (.15) buckler (.14) diastase (.14)

although [ostriches] cannot fly they have other skills ostriches (.24) diastase (.13) wastefulness (.13)
consecutive (.12) keen (.12) buckler (.12)

electric [eel] shocks (.33) motors (.33) current (.32)
charges (.25) sparks (.23) generators (.18)

an electric [eel] current (.36) shock (.25) generator (.23)
charges (.23) swiftness (.20) eel (.20)

an electric [eel] can produce a discharge of several
hundred volts

eel (.19) painters (.12) flexplate (.12)
methanol (.12) current (.12) pcp (.12)

emperor [penguins] mutsuhito (.39) trajan (.31) justinian (.29)
honorius (.26) yuan (.20) claudius (.19)

[penguins] have archaeologists (.45) scientists (.42) we (.40)
biologists (.38) geologists (.36) researchers (.34)

the emperor [penguins] have come to their breeding
grounds

penguins (.24) trajan (.14) would (.13)
leninists (.13) could (.12) researchers (.12)

Note. The italicized word is the correct response for this chunk. Numbers in parentheses following activated
words are vector cosines.
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been found in the order context during learning (resonance). De-
pending on the range of transitions a word has been found in
during learning, either decoding or resonance may return a more
salient signal. The two retrieval processes complement each other;
they frequently agree on candidate words but may disagree.

For example, consider the probe thomas ______. Decoding from
mthomas with correlation retrieves a vector that is very similar to
ejefferson (cos � .59) and mildly similar to eedison (cos � .16), but
no more than randomly similar to other environment vectors.
mthomas has the transition thomas jefferson packed into it so fre-
quently that it is difficult to retrieve anything but ejefferson from it.
However, thomas preceded many other words as well, and the
pattern ethomas �* � is stored in many vectors in the lexicon. When
the pattern ethomas �* � is compared with the lexicon, many lexical
vectors resonate with it, the highest ones being jefferson (.74),
aquinas (.58), hickey (.55), edison (.55), pickney (.50), alva (.45),
wolfe (.40), wentworth (.40), paine (.36), malthus (.34), and
hobbes (.31), among others. Simply averaging the cosine of the
decoded vector with an environmental vector and the cosine of the
encoded environmental pattern with a lexical vector (i.e., averag-
ing decoding and resonance) provides a good measure of a word’s
overall activation to the presented order probe.

Let r be the vector decoded from mthomas, and p be the vector
representing the probe string, ethomas �* �. Averaging the cosines
of the decoded vector with the environmental vectors and the
probe vector with the lexical vectors produces a measure of a
word’s activation, ai, to the presented order probe:

ai �
cos	r,ei
 � cos	 p,mi


2
.

If both resonance and decoding agree on a word, the word’s
activation is emphasized (positively or negatively); otherwise, the
two retrieval sources compete.

Consider the probe ____ aquinas. Again, because mthomas has
the bigram thomas jefferson coded into it with such a high fre-
quency, it does not resonate highly with � �* eaquinas without
further context. However, because maquinas has a narrow range of
transition information coded into its representation, decoding re-
trieves a vector highly similar to ethomas (cos � .48) and only
randomly similar to the other environmental vectors. ethomas may
also be uniquely decoded from medison, mmalthus, mpaine, and so on,
as well.

Because resonance with � �* eaquinas does not reliably resemble
any vectors above chance but decoding does, summing the two
sources produces only a response of thomas (predominantly from
decoding). By contrast, because decoding from thomas ____ pro-
duces only jefferson but resonance retrieves many other traces,
summing the two sources results in a list of candidates in terms of
their activation (jefferson, aquinas, edison, etc.). Both sources are
needed to retrieve order information, particularly in more variable
contexts (e.g., predicting parts of speech rather than names).

Complementing order retrieval with context information.
Context information may be used to further disambiguate transi-
tion information in a probe given shared meaning between the
probe and lexical vectors. For example, consider two probes: (a) he
____ to the highway and (b) he ____ to the audience. Assume that
only the sequence he ____ to has been learned as a stable trigram,
equally activating went, drove, and spoke, but that the full se-
quences of (a) and (b) are novel (i.e., audience and highway only
introduce noise in order retrieval). Including context information
in the probe emphasizes went and drove if highway is present and
spoke if audience is present because they have shared meaning.
However, highway interferes with spoke, and audience interferes
with went and drove. Context information emphasizes semantic
relationships irrespective of matching order instances.12

For example, following thomas, several words are highly acti-
vated if using only order information, with jefferson being the
strongest. The predominance of the bigram thomas jefferson may
be overridden by additional context. Table 8 presents the activation
associated with six legal completions to thomas ____ and how the
activations change as the sentence context is modified. Even
though jefferson is the most likely word to follow thomas in
general, edison becomes the most likely word in the context
thomas ____ made the first phonograph.

Establishing Model Performance

BEAGLE’s learning of context and order information together
produces a representation that improves on limitations of semantic
space models. Furthermore, BEAGLE’s representations are grad-
ually acquired from statistical sampling of words across experi-

12 Alternatively, context information can be calculated using the learned
memory representations.

Table 7
Predicting Words Found in Many Contexts

Phrase Activations

The penguin [does] not fly does (.30) did (.28) could (.23)
dared (.17) shalt (.16) would (.16)

I have to [run] now go (.36) get (.36) work (.35)
make (.33) eat (.31) move (.28)

I [have] to run now ought (.43) want (.35) intend (.33)
have (.30) wish (.30) hate (.30)

No one would be allowed to [interfere]
with the ball

cope (.37) comply (.35) grapple (.33)
associate (.32) interact (.28) interfere (.27)

Kim sat up in [bed] looking sad vain (.24) amazement (.23) unison (.22)
desperation (.21) astonishment (.20) disgust (.19)

Note. The italicized word is the correct response for this chunk. Numbers in parentheses following activated
words are vector cosines.
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ence. In addition, a great deal of word order information can be
retrieved from the representations. Because of the common storage
mechanism, it may prove to be unnecessary to build transition
rules into higher order models of language comprehension if they
use BEAGLE’s holographic representations as input.

Before we proceed, it is important to demonstrate that the
context information learned by BEAGLE allows the model to
perform similarly to a model such as LSA on established tasks.
Furthermore, it is important to determine whether the addition of
order information to the representation interferes with the model’s
ability to use context information. A common performance eval-
uator for semantic models is the synonym section of the TOEFL
(Landauer & Dumais, 1994, 1996, 1997; Turney, 2001). Each item
consists of a target word and four alternative words; the task is to
select the alternative that is most similar in meaning to the target.
Accuracy on a set of 80 retired items was originally used by
Landauer and Dumais (1997) as the criterion for dimensionality
selection in LSA, and the TOEFL has since become a benchmark
for measuring performance of semantic models.

We should note, however, that the TOEFL is a synonym test;
hence, models of semantics need not necessarily perform at human
levels without further mechanisms to identify synonymy. None-
theless, comparing performance and target–alternative cosines be-
tween the models is a good start to establish correspondence.

We used the same 80 TOEFL items originally used by Landauer
and Dumais (1997).13 Both LSA and BEAGLE were trained on the
same TASA corpus. All comparisons with LSA were in term space
with 300 dimensions—this dimensionality is roughly optimal for
performance on the TOEFL items. For BEAGLE, we used the
standard 2,048-dimensional vectors. For each item, the alternative
with the highest cosine to the target was selected as the response.
If either the target or correct alternative was unknown, a score of
.25 was assigned for the item (essentially a guess).

LSA correctly answered 55.31% of the items. Trained on only
context information, BEAGLE was in close correspondence, cor-
rectly answering 55.60% of the items. Trained on both context and
order information, BEAGLE did slightly better, correctly answer-
ing 57.81% of the items.

We computed Pearson correlation coefficients between all 320
target–alternative cosines for LSA, context-only BEAGLE, and
composite BEAGLE. Considering their differences in both learn-
ing mechanisms and context (paragraph for LSA and sentence for
BEAGLE), LSA and context-only BEAGLE were quite similar in

their pairwise word similarities, r(297) � .662, p � .001. The pair-
wise word similarities between LSA and the composite BEAGLE
were also positively correlated, although less so, r(297) � .527,
p � .001 (note: df � N � 2 � pairwise missing items). We tested
the difference between these correlations with E. J. Williams’s
(1959) ratio for nonindependent correlations (see also Steiger,
1980). The correlation between LSA and context-only BEAGLE
was significantly larger than the correlation between LSA and
composite BEAGLE, t(296) � �5.44, p � .001.

The context information in BEAGLE reasonably resembles the
information in the LSA vectors (in terms of TOEFL cosines). The
addition of order information makes the BEAGLE representation
less similar to the LSA representation than does context informa-
tion alone. However, the composite representation performed
slightly better on the TOEFL, whereas its similarity to LSA de-
creased, relative to the context-only representation. In addition to
providing a model of sequential dependency, adding order infor-
mation to BEAGLE may improve the fidelity of semantic repre-
sentation.

Because of the limited number of comparisons in the TOEFL
test, we conducted a much larger comparison between models
using a database constructed by Maki, McKinley, and Thompson
(2004). Maki et al. have constructed a database of nearly 50,000
pairs of words taken from the D. L. Nelson, McEvoy, and Schrei-
ber (1998) norms. For each word pair, they computed semantic
distance from WordNet (Fellbaum, 1998; Miller, 1990, 1999) and
compared with classic studies of human similarity judgments.
Maki et al. demonstrated that WordNet semantic distance is a
better predictor of human judgments of semantic similarity than
other independent semantic measures. We used semantic distance
in WordNet as our standard against which to compare the models.

The Maki et al. (2004) database contains distance measures
from WordNet and LSA cosines (in 419 dimensions14) for 49,559
word pairs. Using the same word pairs, we also computed cosines
for LSA in 300 dimensions and for BEAGLE using context infor-
mation only, order information only, or both context and order
information. Table 9 presents the correlations between the mea-

13 We thank Tom Landauer for the TOEFL items.
14 The 419-dimensional ratings are included in the Maki et al. (2004)

database and were independently computed by Jose Quesada at the Uni-
versity of Colorado at Boulder.

Table 8
An Example of Changing Word Activation With Both Context and Order Information

Probe jefferson edison aquinas paine pickney malthus

Thomas .72 .66 .60 .35 .46 .34
Thomas wrote the Declaration of Independence .44 .30 .24 .29 .17 .14
Thomas made the first phonograph .33 .45 .29 .17 .21 .12
Thomas taught that all civil authority comes from God .30 .26 .40 .13 .17 .12
Thomas is the author of Common Sense .29 .21 .19 .43 .18 .13
A treaty was drawn up by the American diplomat Thomas .32 .26 .27 .17 .92 .15
Thomas wrote that the human population increased faster than the food

supply .23 .22 .21 .12 .14 .41

Note. Numbers are activation values for the target word to the blank position in the probe sequence. Boldface indicates the correct target to fit into that
probe sequence.
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sures. The WordNet values are distance measures; thus, similarity
in the semantic space models should be negatively correlated with
WordNet distance.

The 300-dimensional LSA solution was more highly correlated
with WordNet than was the 419-dimensional solution reported by
Maki et al. (2004), although other factors than dimensionality may
have differed; we do not know the specifics of the 419-
dimensional version. BEAGLE with only context information was
more highly correlated with WordNet than was LSA (300 dimen-
sions), t(49,129) � �32.29, p � .001, as was BEAGLE with order
information only, t(49,129) � �33.65, p � .001 (using E. J.
Williams’s, 1959, ratio). The composite BEAGLE representation
was more highly correlated with WordNet than was either context-
only BEAGLE, t(49,129) � �6.03, p � .001, or order-only
BEAGLE, t(49,129) � �36.89, p � .001. Thus, the composite
representation provides a better correspondence to semantic dis-
tance measures than LSA or the context and order representations
alone do.

Learning the context and order information into the same com-
posite representation must produce some data loss due to compres-
sion. We computed a two-parameter regression model predicting
WordNet distance from both context and order cosines to a one-
parameter model using only cosines from the composite represen-
tation. The multiple correlation from the two-parameter regression
(r � .319) accounted for less than one half of a percent more
variance in WordNet semantic distances than did the one-
parameter regression. This suggests that data loss due to composite
storage of the context and order information in the lexicon is
minimal.

In summary, we have adapted associative memory theory to
learn semantic information using both order and context, without
dimensional optimization—the result is a semantic space repre-
sentation that incorporates order information and that can also
function as a model of sequential dependency. The addition of
order information to the context representation does not weaken
the model’s semantic representation; rather, it enriches the repre-
sentation (based on WordNet semantic distance measures, but see
also Jones, Kintsch, & Mewhort, 2006). In the next section, we
compare the correspondence between the structure learned into
BEAGLE’s representations and data from humans on a variety of
semantic tasks.

Linking Representation to Human Data

The holographic representations learned by BEAGLE contain
each word’s history of contextual and order information. This

section outlines a broad range of semantic and order phenomena
that can be accounted for directly from the structure of these
learned representations. The first subsection describes the similar-
ity structure of clusters of words formed in the lexicon and focuses
on semantic categorization, typicality, and the acquisition time
course of these clusters. The second subsection focuses on pre-
dicting human response latency in various semantic priming tasks,
and the third subsection applies the model to semantic constraint in
stem completions. In many of these tasks, a process model is still
needed to produce response latencies and errors. Although devel-
opment of an appropriate process model is certainly no trivial task,
the purpose of this section is to demonstrate that the BEAGLE
vectors contain the similarity structure needed by such a process
model.

The Structure of Semantic Categories

Because of accumulation of common random vectors across
experience, representations for words in common natural catego-
ries develop similar patterns of elements. The lexical representa-
tions come to cluster in a manner that is similar to the organization
of semantic categories in human memory. A variety of semantic
category effects and acquisition trends can be accounted for di-
rectly from the structure of these learned representations.

Typicality. Typical members of a semantic category can be
processed more efficiently than atypical ones (Collins & Quillian,
1969; Rosch, 1973, 1975; E. E. Smith et al., 1974). Battig and
Montague (1969) collected subjective responses to create empiri-
cal category clustering norms by asking subjects to generate ex-
emplars for certain category labels. For example, robin was the
most frequently produced exemplar for the bird category (pro-
duced by 85% of subjects), whereas chicken was the least fre-
quently produced (produced by only 9% of subjects). Presumably,
frequency of exemplar production reveals something about the
semantic structure of the category of birds. Words that are listed
more often as exemplars of a category are also verified faster as
members of that category in sentence verification tasks (Rips,
Shoben, & Smith, 1973). For example, “A robin is a bird” is
verified almost 50 ms faster than “A chicken is a bird.”

Typicality effects are easy to explain with feature list models but
are difficult to accommodate with a semantic network. With a
featural representation, less frequent category members have fewer
overlapping features with their superordinate list than do more
frequent members. To explain typicality with a semantic network
representation, however, the pathways to less frequent members

Table 9
Correlations Between Semantic Space Models and Semantic Distance in WordNet

Variable 1 2 3 4 5 6

1. WordNet — �.165 �.158 �.293 �.242 �.311
2. LSA (300 dimensions) — .987 .579 .179 .369
3. LSA (419 dimensions) — .569 .174 .364
4. B-Context — .439 .756
5. B-Order — .804
6. B-Composite —

Note. B-context is BEAGLE trained on only context information. B-Order is BEAGLE trained on only order information. B-Composite is BEAGLE
trained on both context and order information together. For all values, p � .001. LSA � latent semantic analysis; BEAGLE � bound encoding of the
aggregate language environment.
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would have to be made longer than those to more frequent mem-
bers. In either case, typicality has to be manually built into the
structure of the semantic representation, whereas BEAGLE’s ab-
stract representation is learned automatically from experience with
text.

Rosch (1975) has suggested that when seeing a new bird, one
may classify it by comparing to a prototypical “birdy-bird,” such
as a robin. That is, typical members of a category should be more
similar to one another—they should cluster together more densely
and closer to the center of the category. Hierarchical semantic
structure is a natural characteristic of the vector representations
learned by BEAGLE. Animals cluster distinctly from places or
vehicles. Within animals, however, fish, birds, and snakes tend to
cluster distinctly from one another as well. Category labels tend to
be proximal to the exemplars of the categories they represent.
Furthermore, the names for features of a category (e.g., wings,
beak) also tend to be more proximal to exemplars of the categories
they are features of.

Figures 8A and 8B show two-dimensional scaling plots for sports
and vehicles, respectively. The smaller gray plots show expansions of
the dense regions toward the center of each category. As the figures
show, the more typical exemplars are positioned nearer to the alge-
braic center of the category (the gray regions). In Rosch’s (1975)
subjective rating norms, football was ranked number 1 (of 60) by
subjects as a good example of a sport, and basketball was ranked
number 3. Curling, on the other hand, was ranked 22.5 as a good
example of a sport. The labels for each category (sports and vehicle)
are also closer to the more typical exemplars. By contrast, the less
typical exemplars of each category are sparsely distributed and further
from (a) each other, (b) the typical exemplars, and (c) the category
label. It is not difficult to see how such a representation could
naturally produce a typicality effect: More typical members are more
like one another, closer to the category center, and closer to the
category label than are less typical ones.

As a concrete example of typicality, consider a classic experiment
by Rosch (1975, Experiment 2). Rosch primed subjects with a cate-
gory label and then simultaneously presented two exemplars; the
response was simply a same–different category judgment. Typicality
of the exemplars, defined by subjective ratings, was varied. The basic
findings were that same responses are faster if primed by the category
name and that both same and different responses are faster to typical
category members than to atypical ones (e.g., robin–sparrow is faster
than chicken–peacock, and robin–car is faster than chicken–tractor).
More recent neurocognitive research has cross-validated the similarity
of neural states implied by Rosch’s typicality response time (RT) data
(Kounios & Holcomb, 1992).

Figure 9 illustrates Rosch’s (1975) RT data (11 categories) for
same responses plotted against BEAGLE’s predictions based on
euclidean distance to both the category prototype and the category
label using the same stimulus pairs.15 For the distance-to-prototype
simulation (open circles in Figure 9), the center of each category
was computed as the mean of all example vectors for the category,
and the mean distance of exemplars to the prototype in each
typicality bin was computed. For the category label simulations
(open triangles in Figure 9), the mean distance of the examples in
each category to the label was computed. Distance (to either
prototype or category label) decreased as a linear function of
typicality both for distance to prototype, F(1, 35) � 7.17, p � .05,
and for distance to label, F(1, 35) � 8.77, p � .01.

Figure 9 shows that the representations learned by BEAGLE
emulate the basic RT findings of Rosch (1975) for two reasons. If,
as Rosch has argued, semantic categories are represented by either
algebraic prototypes (a birdy-bird) or a standard exemplar (robin),
typicality need not be built artificially into either a model’s rep-
resentation or its processing mechanisms. Alternatively, if the
semantic categories are defined by their labels, the representations
learned by BEAGLE will also produce a typicality effect. The
structure is particularly interesting given that BEAGLE does not
have the benefit of perceptual knowledge of birds or fruits that the
human subjects presumably did. Simple learning routines applied
to large-scale redundancies in language are sufficient to produce
semantic typicality effects.

Labeling categories and exemplars. The typicality data imply
that exemplars of a natural category may be classified simply on
the basis of proximity to their appropriate label in the BEAGLE
space. For example, color has a high cosine with blue, red, and
yellow. To test this notion, 14 exemplar words were selected from
each of 11 natural categories (the exemplars are presented in
Appendix B).20 Each of the 154 exemplars was classified by
assigning it to the closest of the 11 category labels in the BEAGLE
space (i.e., the label vector with the smallest euclidean distance to
the exemplar vector). The results are presented in Table 10.

Chance would dictate that only 1.27 of the 14 exemplars in each
category would be correctly labeled (9%). As Table 10 shows,
however, the simple label-proximity algorithm classified exem-
plars much better than chance would predict. VEGETABLES was
the only category that was not classified significantly better than
chance. Tomato was omitted from the list of fruits because it was
incorrectly labeled as a vegetable from contextual experience (a
common human mistake; a tomato is technically a fruit). Further-
more, many of the vegetables used produce flowers, hence the
similarity to the FLOWER label. Across textual experience, flow-
ers, fruits, and vegetables are used quite similarity.

Of particular interest is the pattern of error responses when an
exemplar was misclassified. The final column of Table 10 shows
the incorrectly labeled exemplars and the labels (in order) that
were closer than the correct label to each exemplar. In most error
responses, the second closest label was the correct one. Error
responses, however, were certainly not random: Orange (as a fruit)
was misclassified as a COLOR, for example, and the incorrect dog
exemplars were labeled BIRD (another animal, and DOG was
always the second choice). It is difficult to define exactly how one
would discriminate a label word from an exemplar or feature word
in the lexicon. If the model were to know which vectors are
exemplars and which are labels, however, the structure of the
learned representations might be sufficient to classify exemplars
into categories based on the nearest category label.

Behavior of features in the BEAGLE space. Feature list rep-
resentations were initially appealing because typical exemplars
shared more semantic features with the category prototype than did
atypical ones, and certain common features became very diagnos-

15 Two words were replaced by equal typicality exemplars (based on the
subjective norms) because they did not have lexical entries in BEAGLE—
artichoke was replaced with cabbage, and boysenberry was replaced with
raisin. In addition, to avoid polysemy problems, saw (as a tool) was
replaced by screwdriver in the simulations.
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tic of category membership (e.g., wings, beak) relative to less
unique features. Furthermore, words that have a greater number of
descriptive features tend to have faster lexical decision and naming
times (Pexman, Holyk, & Monfils, 2003; Pexman, Lupker, &
Hino, 2002).

In BEAGLE, typical exemplars of a category are typical because
their statistical distributions are similar, resulting in a representa-
tion that puts them closer to the category center and the category
label. The behavior of exemplar words and feature words in
language naturally produces a representation in which typical

Figure 8. Examples of typicality from proximity of learned representations in the composite BEAGLE space.
A: The structure of sports. B: The structure of vehicles. BEAGLE � bound encoding of the aggregate language
environment.
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exemplars are more similar to category features than are the less
typical ones. For example, near neighbors to VEHICLE are words
representing features descriptive of the category, such as wheels,
driver, headlights, brakes, tires, seat, and engine. These features
are more proximal to a typical vehicle exemplar like car than they
are to an atypical exemplar like sled as a product of the statistical
distribution of the words in language.

To illustrate the similarity of semantic features to the categories
of which they are descriptive, four feature words were selected for
each of six categories from the category labeling simulation; the
words are listed in Table 11. Category feature words were com-

pared with both the label and exemplars of their category com-
pared with other category labels and exemplars.

For the category label comparison, the euclidean distance was
computed between each feature and its correct label (e.g., wings,
beak, fly, and feathers to BIRD) compared with the euclidean
distance between the same features and the other category labels
(e.g., wings, beak, fly, and feathers to DOG, FISH, SPORT,
VEHICLE, and DISEASE). Semantic features were signifi-
cantly closer to their own category label (M � 2.31) than to the
labels of the other five categories (M � 2.78), F(1, 142) � 17.09,
p � .001.

Figure 9. Rosch’s (1975, Experiment 2) typicality data with predictions based on euclidean distance in the
BEAGLE space. The dark squares represent Rosch’s response time (RT) data from same responses and
correspond to the scale on the left of the figure. The open circles represent the distance to prototype in the
BEAGLE representations and correspond to the outside right scale on the figure. The crossed-triangles represent
the distance to label in the BEAGLE representations and correspond to the inside right scale on the figure.
BEAGLE � bound encoding of the aggregate language environment. Med � medium.

Table 10
Accuracy of Labeling Exemplars Using the Most Proximal Label Word for 11 Categories and 14 Exemplars Per Category

Category Accuracy (%) t Errors

COLORS 86 7.90* purple � FLOWER; green � FLOWER, BIRD, FISH
SPORTS 93 11.74* football � BIRD
FISH 100 —
BIRDS 100 —
DOGS 79 6.11* beagle, bulldog, foxhound � BIRD
CITIES 93 11.74* berlin � COUNTRY
COUNTRIES 100 —
FLOWERS 79 6.11* daisy, daffodil, tulip � BIRD
FRUITS 71 4.99* orange � COLOR; grapefruit � VEGETABLE; strawberry �

FLOWER; pear � BIRD
VEGETABLES 21 1.09 broccoli, parsley � FRUIT; cauliflower, radish, rhubarb � FLOWER;

peas, eggplant, asparagus, onions, leeks � FRUIT, FLOWER
DISEASES 100 —

Note. t values are one-sample t tests from chance (df � 13; � � 9%). The Errors column lists exemplars that were incorrectly labeled and the labels (in
order) that were closer to the exemplar than its correct label (exemplars are lowercase, labels uppercase).
* p � .001.
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For the exemplar comparison, the euclidean distance was com-
puted between each feature and the 14 exemplars of its category
listed in Appendix B (e.g., wings, beak, fly, and feathers to robin,
sparrow, etc.) compared with the euclidean distance between the
same features and the 14 exemplars for each of the five other
categories. Semantic feature words were significantly closer to
exemplars of which they were descriptive (M � 3.08) than they
were to exemplars from the other categories (M � 3.43), F(1,
2014) � 160.85, p � .001.

Semantic feature words may well be descriptive of their cate-
gories in that they are similar to members of the category from
contextual experience. However, they need not be an inherent part
of the semantic representation. BEAGLE demonstrates that a dis-
tributed representation, learned from simple mechanisms applied
to statistical redundancies in language, can represent exemplars,
labels, and features with the same abstract representation.

Acquisition of semantic and lexical categories. In the previous
section, the learned lexical representations displayed cohesive
structure between exemplars of a semantic category. However, this
structure must be learned across many sentences in the corpus.
Because the lexical representations begin from random vectors and
gradually form structure from statistical sampling of words in the
corpus, development of semantic structure in the lexicon across
time can be studied.

For example, Figure 10 shows two-dimensional scaling plots for
five exemplars of COUNTRIES, FISH, and COLORS. Figure 10A
shows similarity between representations with only 1,000 sen-
tences learned; structure between the representations early in
learning is still close to random. By contrast, Figure 10B shows
similarity between the same representations after the entire corpus
has been learned; clearly, cohesion for the semantic groups has
increased as noise is averaged out, and some categories are more
cohesive than others.

Because dimensionality in BEAGLE is fixed and only the
pattern of elements changes across learning, development of cat-
egory cohesion can be studied continuously as a function of
experience (i.e., the time course of movement from Figure 10A to
Figure 10B). Figure 11 shows mean interexemplar cosine across
learning for the 14 exemplars of COLORS, NUMBERS, FISH,
and COUNTRIES listed in Appendix B. To avoid any potential
artifact due to sentence/document order in the TASA corpus,
sentences were sampled randomly without replacement. Thus,
Figure 11 displays group cohesion as a function of progressive
sampling.

In general, semantic category cohesion tends to develop as an
exponential function of learning; however, some categories gain

cohesion faster than others and ultimately to a greater extent. The
rate of category cohesion development depends on both frequency
and contextual variability of exemplar words. Figure 11 also
illustrates that both words that have articles dedicated to them
(e.g., COUNTRIES) and words that are defined simply by their
usage across the corpus (e.g., NUMBERS and COLORS) can form
cohesive categories.

Examining continuous learning can be particularly difficult with
classic types of knowledge representation (e.g., semantic networks
and feature lists) as well as contemporary semantic space models.
In BEAGLE, dimensionality is fixed across learning, and only the
pattern of vector elements changes with learning; hence, continu-
ous development is a natural characteristic of a random accumu-
lation model. More recent work with semantic networks has ex-
amined growth as a function of learning (e.g., Steyvers &
Tenenbaum, 2005), but a comparison of modern distributed and
localist models of semantic development is beyond the scope of
this article.

Development of structure in the lexicon is not limited to seman-
tic categories. For example, many studies have examined the
differences between abstract and concrete words in various tasks
(see Neath, 1997, for a review). Generally, concrete words (e.g.,
dog) are easier to process and recall than are abstract words (e.g.,
justice). In addition, concrete words normally have an earlier age
of acquisition than do abstract words (McFalls, Schwanenflugel, &
Stahl, 1996).

Paivio’s (1971, 1986) dual-coding theory proposes that words
representing concrete objects can be encoded using both verbal
and visual codes (e.g., the word dog and an image of a dog),
whereas abstract words have no visual code (see Pylyshyn, 1973,
1981, for criticisms of Paivio’s theory). In BEAGLE, concrete and
abstract words can become similar to other members of their class
from indirect information.

Figure 12 shows the time course of group cohesion development
in the lexicon for abstract and concrete words (80 words per group;
sentences were sampled in random order). The abstract and con-
crete words used in this simulation were taken from Paivio, Yuille,
and Madigan (1968); they were balanced for frequency, length,
and age of acquisition, but the concrete words had a higher mean
imageability rating and concreteness rating than did the abstract
words (see Neath, 1998, Appendix Table I). In BEAGLE, the
concrete words had a higher mean interword cosine (.6121) than
did the abstract words (.2034). More importantly, Figure 12 shows
that the acquisition trends for the two groups are very different:
Both groups become progressively more cohesive, but concrete
words have a much steeper slope of acquisition than do abstract
words.

It is possible that the differences between abstract and concrete
words have to do with their natural statistical variability in lan-
guage. As a group, concrete words are more similar to one another
and have denser semantic neighborhoods than do abstract words.
Furthermore, the cohesion benefit for concrete words is learned
faster than that for abstract words as a characteristic of statistical
sampling.

Because of acquisition of order information, development of
lexical categories can also be examined in the BEAGLE lexicon.
As a general example, consider the broad finding that nouns are
learned faster than verbs (Fleischman & Roy, 2005; Gentner,
1982; Snedeker & Gleitman, 2004). An 18-month-old child’s

Table 11
Semantic Features for Each Category Used in the Distance-to-
Prototype and Distance-to-Label Simulations

Category Features

BIRD wings, beak, fly, feathers
DOG bark, fetch, pet, fur
FISH swim, gills, scales, fins
SPORT players, crowd, score, skill
VEHICLE wheel, driver, motor, brakes
DISEASE symptoms, treatment, pain, sickness
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Figure 10. An example of semantic category development with exemplars of countries, colors, and fish. A:
Structure between the exemplars with only 1,000 sentences sampled. B: Structure between the same exemplars
when the entire text corpus has been learned.
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lexicon is composed of predominantly concrete nouns; verbs do
not tend to stabilize until later even though the child’s environment
is usually split evenly between nouns and verbs (K. Nelson, 1974,
1981).

Why, given equal exposure to nouns and verbs, are nouns
acquired first? Presently, the dominant hypothesis is perceivability
(e.g., Gillette, Gleitman, Gleitman, & Lederer, 1999; Snedeker &
Gleitman, 2004): Children use concrete nouns first because they
represent concrete objects that may be physically manipulated in
the child’s environment. Recall from the abstract versus concrete
simulation, however, that BEAGLE predicts concreteness from the
structure of the language environment. In BEAGLE, the learning

benefit for nouns over verbs reflects the structure learned from the
statistical distribution of words in language.

Figure 13 shows cohesion of 20 nouns and 20 verbs (equated for
frequency in TASA) as a function of sentences sampled (in ran-
dom order). The words used are presented in Appendix C. Con-
sistent with the empirical trend, the nouns are more cohesive as a
group than the verbs, and this structure is learned faster for nouns
than verbs. Obviously, the structure of sentences in TASA is
different from the structure in a child’s language environment.
Nonetheless, the structure in the representations learned by
BEAGLE is consistent with nouns as a group being learned faster
than verbs.

Intuitively, it makes sense that perceivability must be a major
factor influencing the benefit for learning nouns faster than verbs.
However, it is possible that this finding is due in part to the
statistical distribution of the two lexical classes across language;
that is, acquisition trends may be partly explained as progressive
sampling in a statistically redundant language environment. More
research is needed to tease apart the effects of perceivability and
large-scale statistical structure. In addition, the two sources of
information are not completely separable—perceivability influ-
ences the statistical usage of words in language.

Priming

The structure of semantic representation has been studied at
great length using similarity priming techniques (for reviews, see
McNamara, 2005; Neely, 1991). The common finding in priming
is that a stimulus is processed more efficiently when it is preceded
by a related stimulus. The assumption is that the first stimulus (the
prime) facilitates processing of the second stimulus (the target)
because they have shared information in their respective mental
codes (Rosch, 1975). In semantic priming, the magnitude of facil-
itation depends on the semantic similarity between the prime and
target. For example, nurse is processed more efficiently when
preceded by doctor than when preceded by bread (Meyer &
Schvaneveldt, 1971).

Figure 11. Development of semantic category cohesion in the lexicon as
a function of progressive sentence sampling.

Figure 12. Development of cohesion within abstract and concrete words
(from Paivio, Yuille, & Madigan, 1968) as a function of progressive
sentence sampling.

Figure 13. Development of lexical class cohesion in the lexicon as a
function of progressive sentence sampling.
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Localist models account for semantic priming with the construct
of spreading activation (Anderson & Bower, 1973; Collins &
Loftus, 1975). When nodes in a network are activated, the activa-
tion spreads along the associated pathways to related nodes. The
spread of activation makes the associated nodes already partially
activated when a related concept is processed. Spreading activation
is a crucial explanatory component of semantic networks (Balota
& Lorch, 1986). In feature list representations, by contrast, seman-
tic priming is accounted for by overlapping features between the
prime and target. Whereas robin shares no features with chair, it
has more shared features with bat and even more with sparrow.

It has been greatly debated whether semantic priming is due to
strength of association or semantic overlap between the prime and
target (Huchinson, 2003; Lucas, 2000; J. N. Williams, 1996). The
aggregate results of many studies (see Huchinson, 2003) imply that
priming exists for pairs that have either a semantic-only or an
associated-only relationship. In addition, there exists an associa-
tive boost for prime–target pairs that have both types of relation-
ships. It has been argued, however, that the semantic–associative
distinction is a false dichotomy (e.g., Huchinson, 2003; Mc-
Namara, 2005; Steyvers, 2000); there are unlikely to be any purely
associated or purely semantically related words.

In BEAGLE, facilitation should be directly predictable from
structural similarity between lexical representations. Because the
representations contain both semantic and associative information,
overlap in either type should cause facilitation, and prime–target
pairs that share both types of information should yield an
associative boost. Unlike a binary feature representation, however,
BEAGLE’s abstract distributed representations allow shared infor-
mation between all types of words (e.g., exemplars, category
labels, and features: robin, bird, and wings, respectively). Further-
more, the indirectly learned contextual information affords simi-
larity relations found in mediated priming.

Semantic and associative priming. As an example of simulat-
ing priming from the representations learned by BEAGLE, con-
sider a study by Chiarello, Burgess, Richards, and Pollok (1990).
They used prime–target pairs that had a relationship that was either
semantic only (deer–pony), associative only (bee–honey), or both
semantic and associative (doctor–nurse).16 Chiarello et al. mea-
sured performance for presentations separately for each visual
field; for simplicity here, we collapse across the visual fields.

Table 12 presents the latency data from Chiarello et al. (1990,
Experiment 2: naming responses) and the corresponding cosines
between the same words in BEAGLE. Note that a high cosine
indicates greater similarity, which, in turn, predicts faster RTs in
that condition relative to a condition with lower cosines. A nega-
tive priming difference in BEAGLE, thus, predicts positive facil-

itation in human data (i.e., the unrelated prime–target pairs are less
similar than are the related pairs). Chiarello et al. found significant
facilitation for semantic-only and semantic plus associated prime–
target pairs.

In BEAGLE, the related prime–target pairs had significantly
higher cosines than the unrelated pairs in the semantic-only con-
dition, F(1, 47) � 33.95, p � .001; the associated-only condition,
F(1, 47) � 19.15, p � .001; and the semantic plus associated
condition, F(1, 47) � 114.49, p � .001. The magnitude of the
facilitation predicted by BEAGLE differed across the three prim-
ing conditions, F(2, 141) � 10.65, p � .001. Student Newman-
Keuls post hoc tests revealed that the differences between all three
conditions were significant (i.e., all three groups are homogeneous
subsets).

BEAGLE predicts Chiarello et al.’s (1990) findings of facilita-
tion in the semantic-only and semantic plus associated conditions.
Furthermore, facilitation was predicted to be greater in the seman-
tic plus associated condition than in the semantic-only condition,
as it was in the human data. BEAGLE does, however, predict a
small but reliable facilitation effect in the associated-only condi-
tion, a finding not mirrored by the Chiarello et al. data. However,
using the same stimuli, Chiarello et al. found facilitation in the
associated-only condition in their Experiment 1 (lexical decision),
and it has been reliably demonstrated in many other studies (see
Huchinson, 2003).

To extend the demonstration of facilitation in associated-only
prime–target pairs, predictions were generated from BEAGLE for
an associated-only stimulus set used by Shelton and Martin (1992,
Experiments 3 and 4). Shelton and Martin found robust facilitation
priming for these stimuli, with faster responses when the target
was preceded by an associated prime (coffee–cup: 517 ms) than
when preceded by an unrelated prime (mouse–cup: 553 ms). Using
the same prime–target pairs in BEAGLE, cosines between the
target words and their associated primes (M � .5887) were sig-
nificantly higher than between the targets and unrelated primes
from the same list (M � .2886), F(1, 35) � 126.35, p � .001.

BEAGLE generally predicts weaker facilitation between prime–
target pairs that share only an associative relationship (bandage–
doctor) because associative information is learned only from
shared context in the model. Semantic relationships (lawyer–
doctor) tend to be stronger than purely associative relationships in
the model, and pairs that have a relationship that is both semantic

16 However, Steyvers (2000) has noted that many of the so-called
semantic-only words in Chiarello et al.’s (1990) experiment were, in fact,
often associates in the D. L. Nelson et al. (1998) norms.

Table 12
Priming Results From Chiarello et al. (1990) and Predictions Based on Lexical Similarity From the BEAGLE Representations

Prime–target similarity

Chiarello et al. (1990) BEAGLE

Unrelated Related Priming Unrelated Related Priming

Semantic 792 769 22 .2392 .4065 �.1673
Associated 786 789 �3 .3267 .4229 �.0961
Both 798 770 28 .2515 .5113 �.2598

Note. BEAGLE � bound encoding of the aggregate language environment.
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and associative (nurse–doctor) are predicted to have an associative
boost because their similarity is the result of multiple learning
sources (local and global context and order information) and the
sources are simply summed during learning. Note, however, that
certain associative relationships can be more powerful than purely
semantic ones.

Mediated priming. In a mediated priming task (Balota &
Lorch, 1986), the relationship between the prime and target (e.g.,
lion–stripes) is through a mediated concept (e.g., tiger). Mediated
priming often produces only a subtle effect on RT. However, even
when it is not observed in RT data, mediated priming is still
prominently observed in neurocognitive measures of brain func-
tion and is associated with the N400 component in evoked brain
potential recordings (Chwilla & Kolk, 2000). McKoon and Ratcliff
(1992) have suggested, however, that mediated priming may not
be mediated at all but rather may reflect a weak associative
relationship directly between the prime and target.

Mediated priming can be accounted for naturally in semantic
networks by spreading activation but is difficult to explain by a
feature list account. In a network representation, activation of a
node spreads activation to connected nodes. Thus, when the lion
node is activated, activation spreads to tiger because it is closely
connected to lion and then to stripes because it is closely con-
nected to tiger. In a feature list representation, however, lion and
stripes cannot overlap (in fact, stripes should be a feature slot, not
a distinct representation).

Mediated priming naturally occurs in BEAGLE representations
without the need for a process like spreading activation. In BEAGLE,
features (elements) are abstract values representing the distribution
of samples across experience. No one feature has any meaning in
isolation, but the word is represented by its complete pattern of
elements (much like weights in a connectionist network). Even
though lion and stripes may never directly co-occur in text, their
representations have shared random vectors from the contexts in
which they are found. Lion and mane become similar from shared
context, as do tiger and stripes. Because lion and tiger become
similar to each other, mane and stripes become similar to both and
to each other even if they never directly co-occur. Thus, in a sense,
BEAGLE supports McKoon and Ratcliff’s (1992) notion that
mediated priming is actually due to direct similarity between the
prime and target. Unlike McKoon and Ratcliff’s account, however,
the two words need not be present simultaneously in short-term
memory during encoding. The information that becomes shared
between lion and stripes is learned from their statistical behavior in
language, which is mediated through their respective relationships
to tiger. In the learned representations, the similarity between lion
and stripes is direct and exists even without a lexical entry for
tiger.

For example, Balota and Lorch (1986) tested prime–target pairs
that had either a direct relationship (e.g., tiger–stripes) or a rela-
tionship that was mediated through a concept related to both (e.g.,
lion–stripes). They used the same targets in all conditions but
varied the primes.

Table 13 shows Balota and Lorch’s (1986) RT results and
corresponding predictions from BEAGLE using the same word
pairs (unrelated primes were random re-pairings with another word
from the related list, as Balota and Lorch, 1986, did; see their
appendix). BEAGLE predicts the priming facilitation found in the
human data. The related prime–target pairs had significantly

higher cosines than the unrelated pairs, F(1, 47) � 19.71, p �
.001, as did the mediated prime–target pairs, F(1, 47) � 8.11, p �
.001. Furthermore, the predicted facilitation for the related condi-
tion (unrelated � related � �.1095) was significantly greater than
the predicted facilitation for the mediated condition (unrelated �
mediated � �.0644), F(1, 47) � 7.73, p � .01.

The BEAGLE representations naturally predict mediated prim-
ing effects observed in human data without relying on a process
construct such as spreading activation. In BEAGLE, the similarity
between all prime–target pairs is direct and need not be mediated
through another representation. Furthermore, the model predicts
greater facilitation for prime–target pairs that have a direct seman-
tic relationship than it does for mediated pairs,17 another charac-
teristic found in the human data.

Semantic Constraint in Stem Completions

Stem and completion stimuli are commonly used to study se-
mantic constraint and syntactic ambiguity resolution. The general
finding is that the final word of a sentence is identified or judged
more quickly when it is consistent with the meaning of the pre-
ceding sentence string (Fischler & Bloom, 1979; Schuberth &
Eimas, 1977). The more specific the meaning of the stem is, the
more constrained the list of candidate completion words will be.
Although the precise mechanism or mechanisms of this effect are
the subject of debate (Fischler & Bloom, 1985), in BEAGLE it is
directly predictable from the fit between the context and order
information in the stem and the lexicon. Lexical vectors that fit the
meaning and order of the sentence more appropriately are more
highly activated by presentation of the stem. To compute context
information for a stem, we sum the learned lexical vectors for each
word in the stem. To compute order information for the final
position, we replace the position with the phi vector and convolve
the environmental vectors for the words around this position.

For example, consider how well boat fits as a completion word
in the following two stems (from Whittlesea, 1993):

1. She saved her money and bought the _____.

2. The stormy sea tossed the _____.

In BEAGLE, the context information from Stem 1 activates lexical
vectors vaguely related to a number of things because the overall
meaning of the stem is vague; some of the top neighbors are verbs

17 The notion of mediation is now confusing because, in BEAGLE, even
mediated relationships are actually due to directly shared statistical infor-
mation.

Table 13
Priming Results From Balota and Lorch (1986) and Predictions
Based on Lexical Similarity From the BEAGLE Representations

Related Mediated Unrelated

Balota & Lorch (1986) 549 558 575
BEAGLE .3647 .3196 .2653

Note. BEAGLE � bound encoding of the aggregate language environ-
ment.
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such as paid, purchased, earned, sold, spent, and received. The
target word boat is the 1,081st neighbor to the context vector for
this sentence. Adding the order information (i.e., computing
summed convolutions for the final position) generally constrains to
words that also fit the grammaticality of the final position, which
inhibits paid, purchased, and so on as likely candidates. The
addition of order information increases boat’s activation over the
above verbs and moves its rank order up to 244. Given the
vagueness of the stem, however, few words are highly constrained
by the context and order information. The terminal word could just
as likely be boat, car, house, or a number of other concrete nouns.

The context vector for Stem 2, on the other hand, is more
constrained and is similar to concepts like wind, water, waves, and
shore. Boat is the 16th neighbor to the context vector for Stem 2.
Adding the order information for the terminal position constrains
the activations somewhat, moving boat up to the 10th neighbor.
The lexical vector for boat has a cosine of .42 with the context and
order vector for Stem 1 and a cosine of .56 for Stem 2. Ship fits
even better than boat in Stem 2 and even worse in Stem 1.

In his study, Whittlesea (1993) examined the effect of process-
ing fluency on a word-naming task with stem and completion
stimuli similar to the above example. Specifically, he used 10
high- and 10 low-expectation stems (see his Appendix A) with
different terminal words. The subject’s task was to read the stem
and press a button to reveal the completion word, reading it aloud
as quickly as possible. Pronunciation latencies were faster to
completion words preceded by a high-constraint stem (661 ms;
e.g., Stem 2) than by a low-constraint stem (735 ms; e.g., Stem 1).

In BEAGLE, the context and order information for the same
stems was computed for the terminal position, and the two types of
information were summed into a composite probe vector. The
cosine was computed between the probe vector and the lexical
vector for the terminal word for each stimulus. The model predicts
Whittlesea’s (1993) finding of greater congruency between stem
and completion if the context is semantically more predictive.
Specifically, high-expectation stem and completions had signifi-
cantly higher cosines (M � .3517) than did low-expectation stem
and completions (M � .2666), F(1, 18) � 6.30, p � .05.

In a related study, Whittlesea (2002) used a larger stimulus set
(see his appendix) that varied stem constraint while using the same
completion words. An example of a high-constraint stem is “After
the accident he was covered in . . . ,” and an example of a
low-constraint stem is “On the corner of the table there was a bit
of . . . ,” with glass and blood being legal completion words for
either stem. Whittlesea normed these stimuli by having subjects
rate whether the completion was predictable from the stem; the
norming data are of interest here. Subjects rated the completion
words as more predictable from the high-constraint stems (.81)
than from the low-constraint stems (.27).

In BEAGLE, the context and order information was computed
for the final position of the same 240 stems from Whittlesea’s
(2002) experiment, and the cosine was calculated between the stem
vectors and their respective completion words. High-constraint
stem and completions (M � .3500) were significantly more similar
than low-constraint stem and completions (M � .2751), F(1,
119) � 49.92, p � .001.

In a similar study, Taraban and McClelland (1988, Experiment
1) used stem and completion stimuli to tease apart the effects of
phrase attachment and expectation in stem completions. They

designed sentences in which the terminal word was a noun-phrase
attachment (NPA; “John ordered a pizza with pepperoni”) or a
verb-phrase attachment (VPA; “John ordered a pizza with enthu-
siasm”). According to the principle of minimal attachment (Frazier
& Rayner, 1982), the NPA sentences should take longer to read
than the VPA sentences because they have more constituent
branches. However, Taraban and McClelland selected NPA words
to be more expected from the stem than the VPA words, pitting
expectation against minimal attachment.

Taraban and McClelland (1988) normed their stimuli by having
subjects rate how expected the completion word was from the stem
on a 5-point scale. Expectation was subsequently used to predict
reading times in the experiment. Table 14 presents Taraban and
McClelland’s data along with BEAGLE’s predictions for the same
stimuli.18 In BEAGLE, the NPA completion words were more
similar to the stems than were the VPA completions, F(1, 17) �
5.29, p � .05.

The key difference between Whittlesea’s (2002) stimuli and
Taraban and McClelland’s (1988) stimuli is whether the stem or
completion was varied. Whittlesea used the same completion
words in both conditions and varied the stems to manipulate
expectation. By contrast, Taraban and McClelland used the same
stems in both conditions and varied the completion words to
manipulate expectation. In either case, both stems and completions
are coded as single vectors in BEAGLE, and both manipulations of
expectation are directly predictable from the learned lexical rep-
resentations.

Experiment 2 of Taraban and McClelland (1988) examined
types of noun fillers in their expectation from the stems. For
example, given the stem “The janitor cleaned the storage area with
the . . . ,” fillers may be either (a) fully consistent (broom), (b) less
expected filler (solvent), (c) less expected role (manager), or (d)
less expected attachment (odor). The stimuli were first normed by
subjects on a 5-point scale in terms of expectation of completion
given the stem and overall plausibility of the sentences; the sub-
jective ratings predicted reading times in a subsequent experiment.
Their data are presented in Table 15 along with BEAGLE’s cosine
predictions for the same stimulus set.

Although the pattern of cosines from BEAGLE is consistent
with the data from Taraban and McClelland’s (1988) Experiment

18 Three words in Experiment 1 had no lexical entry in BEAGLE and
were substituted for synonyms: flaunted � exhibited, pepperoni � meat,
and hideout � shelter.

Table 14
Mean Expectation Ratings and Reading Times (ms) From
Taraban and McClelland (1988, Experiment 1) and Stem-
Completion Cosines From the BEAGLE Representations

Attachment type

Taraban & McClelland (1988) BEAGLE

Expectation Reading time Cosine

NPA (expected) 3.97 644 .3758
VPA (unexpected) 2.99 738 .3166

Note. BEAGLE � bound encoding of the aggregate language environ-
ment; NPA � noun-phrase attachment; VPA � verb-phrase attachment.
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2, the omnibus analysis of variance across the conditions was only
marginally significant, F(3, 69) � 1.97, p � .10. Taraban and
McClelland found no significant difference in expectation or plau-
sibility ratings between the less expected filler, less expected role,
and less expected attachment conditions (see Table 15), but the
fully consistent condition was rated significantly higher than the
less expected filler, less expected role, and less expected attach-
ment conditions on both measures. In BEAGLE, an orthogonal
contrast comparing the fully consistent condition with the mean of
the less expected filler, less expected role, and less expected
attachment conditions mirrored Taraban and McClelland’s find-
ings, F(1, 23) � 4.12, p � .05.

The representations learned by BEAGLE provide a higher fi-
delity representation of word meaning that incorporates both con-
text and order information. The resulting representations have been
shown to possess the necessary structure to account for human data
in a variety of semantic and word prediction tasks.

General Discussion

The purpose of this article is to demonstrate that a holographic
lexicon, representing both word meaning and word order, can be
learned by a simple summation–association mechanism applied to
the large-scale statistical redundancies present in text. Further-
more, a broad range of psycholinguistic phenomena can be ac-
counted for directly from the structure of lexical representations
learned in this way. The model is not intended as a model of
language but rather as a memory model that provides an account of
the representations to be used by higher order models of language
comprehension (e.g., Kintsch, 1988, 1998). The notion is to ac-
count for as much behavior as possible from the structure of the
knowledge representation before building rules and complexity
into a model. As Estes (1994) has noted, “it is clear a priori that
once we know what performance occurs in any situation, we can
describe it in terms of rules” (p. 245). However, hardwired rules
and complex mechanisms should be used as a last resort in mod-
eling, only after simple explanations have been exhausted.

Gibson (1966) warned perceptual theorists not to postulate
computational mechanisms for the perceptual system when the
necessary information for perception could be obtained from the
environment via the sensory system. Similarly, Simon (1996)
reminded cognitive theorists not to build complexity into a mod-
el’s algorithms when the behavior can be understood in terms of a
simple organism responding to redundancies in a complex envi-

ronment. Discussing the path taken by an ant on a beach, Simon
noted that the ant’s path is “irregular, complex, hard to describe.
But the complexity is really a complexity in the surface of the
beach, not a complexity in the ant” (Simon, 1996, p. 51).

The work presented here reiterates Simon’s (1996) advice in the
domain of knowledge representation, reminding theorists not to
build unnecessary complexity into either the representation or
processing mechanisms when it can be more easily explained from
the structure learned by a simple mechanism applied to statistical
redundancies in a complex language environment. At some level
of comprehension, complex rules may be recruited to account for
behavior, and it is possible that these rules cannot be learned from
the environment alone. Built-in rules to account for language
comprehension should not be the default modeling approach but
rather should be examined only for behavior that is too complex
to account for from the structure of the simple representation.
BEAGLE requires minimum innate control structure in learning
and illustrates that a wide range of data may be explained directly
from statistical abstraction of the language environment.

BEAGLE assumes that the lexical representation for a word is a
pattern of elements across an arbitrary number of dimensions. The
true value for each element in a word’s representation must be
estimated over statistical sampling. There exists a distribution of
values for a particular element; with successive observations of the
word in language, noise is averaged out, and the true value
emerges because of the central limits theorem.

Furthermore, the knowledge representation itself in a model
should be as simple as possible and should not contain unnecessary
complexity. BEAGLE demonstrates that distributed representa-
tions of word meaning and usage can be automatically learned
using very simple learning mechanisms rather than by having
complexity built artificially into the knowledge representation, as
is the case with classic feature list or semantic network represen-
tations.

Comparing BEAGLE With Other Semantic Space Models

BEAGLE extends existing semantic space models by introduc-
ing a new way to implement the core principle of inducing word
meaning from usage in text. BEAGLE improves on criticisms of
existing semantic space models (a) by incorporating word order
and (b) by exploiting an incremental learning algorithm. Further-
more, because it adapts learning and representation principles from
associative memory theory (Murdock, 1982, 1992), the model uses

Table 15
Mean Expectation and Plausibility Ratings With Reading Times (ms) to the Four Types of
Completion Attachments From Taraban and McClelland (Taraban and McClelland 1988,
Experiment 2) and Stem-Completion Cosines From the BEAGLE Representations

Attachment type

Taraban & McClelland (1988) BEAGLE

Expectatation Plausibility Reading time Cosine

Fully consistent 4.10 4.20 355 .2818
Less expected filler 2.05 2.90 365 .2527
Less expected role 1.95 3.10 395 .2463
Less expected attachment 1.94 3.20 400 .2625

Note. BEAGLE � bound encoding of the aggregate language environment.
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the same mechanisms to learn word meaning that may be used to
form other memory representations and that have been effective in
accounting for judgments of frequency and recency (Murdock &
Smith, 2001), recognition and serial recall (Mewhort & Popham,
1991; Murdock, 1992), and free recall (Franklin & Mewhort,
2002). These same mechanisms allow the model to retrieve word
transition information stored in its lexicon.

The major difference between the representations learned by
BEAGLE and those learned by LSA is that BEAGLE includes a
consideration of order information in addition to context informa-
tion. The hyperspace analogue to language (HAL; Burgess &
Lund, 2000; Lund & Burgess, 1996) does measure distance (in
word steps) in a moving window as it learns but does not explicitly
encode order information, nor does it have a mechanism to retrieve
sequential dependencies. For the priming data presented in this
article, for example, neither LSA nor HAL predicts the pattern of
priming found in the human data; whereas HAL underestimates
the magnitude of associative priming, LSA overestimates associa-
tive priming and underestimates semantic priming. In addition,
HAL is unable to predict mediated similarity (Livesay & Burgess,
1998). This incongruence is also found in a variety of other
priming data (see Jones et al., 2006). Priming is an example of
behavior that depends on both semantic and associative informa-
tion, and only a representation that considers both types of infor-
mation can correctly simulate the aggregate human data.

BEAGLE represents both context and order information in a
composite representation, giving it a higher fidelity representation
of word meaning. As a by-product of using convolution as an
order-encoding mechanism, the model can invert the routine and
retrieve word transitions from the same representations. Thus, it is
a model of both word meaning and sequential dependency infor-
mation without requiring additional storage or assumptions. Note,
however, that convolution–correlation is a primitive model of
sequential dependency: Its virtue is that it demonstrates that
learned positional information may be retrieved from semantic
memory, and for that reason, BEAGLE takes a small step toward
an empiricist theory of language. Although BEAGLE cannot cur-
rently replace generative models of language, it suggests a reduced
role for rule-based processing.

More recent co-occurrence models use Bayesian methods to
consider how often words appear together in contexts and apart
(e.g., Griffiths & Steyvers, 2002; Griffiths, Steyvers, & Tenen-
baum, 2005; Hoffman, 2001; A. E. Smith & Humphreys, 2006;
Steyvers & Griffiths, in press). Specifically, topic models (e.g.,
Griffiths, Steyvers, & Tenenbaum, 2005) use probabilistic meth-
ods to infer the generative topics from which documents were
created. The idea is that a document is a mixture of generative
topics, where a topic is a probability distribution over words.

Griffiths, Steyvers, Blei, and Tenenbaum (2005) have integrated
the generative processes from a probabilistic topic model and a
hidden Markov model to fuse a model of meaning with one of
sequential dependencies. Like BEAGLE, the model considers both
syntactic and semantic information as it processes text. However,
the model has been tested only on automated lexical class tagging
and document classification rather than fitting to human data, and
a comparison between the two models at this point would be
imprudent without data on common tasks.

Another difference between BEAGLE and other semantic space
models concerns the nature of a word’s context. In LSA, context is

specifically a document (as it is in topic models; e.g., Griffiths,
Steyvers, & Tenenbaum, 2005). HAL has no concept of a context but,
rather, moves an n-word window continuously along a text corpus,
bridging sentences. In BEAGLE, however, a word’s context is spe-
cifically the sentence because order information must be computed
within each sentence to correctly consider syntactic information.19

Nonetheless, when BEAGLE is trained on context information only,
the similarity structure of the representations learned is very similar to
those learned by LSA when both are trained on the same text corpus.
Changing BEAGLE to compute context information across the para-
graph or document, rather than the sentence, produces representations
with similarity only subtly more like LSA. Thus, it does not appear
that the size of the context is particularly important to computation of
context information in BEAGLE.

It is possible that BEAGLE is particularly sensitive to its initial
conditions. With models such as HAL, LSA, or topics, the initial
data are constant across several runs (e.g., a Term � Document
matrix of the textbase in the case of LSA).20 Hence, these models
are likely to produce the same representation on multiple training
runs of the same input corpus. By contrast, BEAGLE begins with
random noise and gradually accumulates structure across statistical
sampling. The environmental representations for a word are cre-
ated at random and are different on any two training runs of the
same corpus (unless the seed is stored). It follows that the lexical
representations for a word on any two runs are only randomly
similar as well. The semantic similarity is in the structural simi-
larities between words within the lexicon; even though lexicons
from any two runs are different, the pattern of interword cosines is
remarkably similar. Thus, the representation for dog is different on
two training runs, but the similarity of dog with cat is highly
congruent on both runs. We have compared the similarity structure
on multiple lexicons trained on the same corpus, and the interword
similarity structures between lexicons are quite consistent from
different random initial conditions. Provided that the initial con-
ditions in BEAGLE are indeed close to random, the exact initial
conditions seem to be unimportant.

A criticism that is common to both semantic space models and
SRNs has to do with the role of supervision in learning word
meanings; this criticism is also valid against BEAGLE. Although
children obviously benefit from feedback and supervision when
learning word meanings, McClelland has noted that most unsuper-
vised models are analogous to “learning language by listening to
the radio” (as cited in Elman, 1990, p. 201). Although semantic
space models can learn word meanings without the need for
feedback, supervision is certainly an important factor in human
word learning, and semantic models need to account for it. Elman
(2004) has suggested that feedback can be derived from the stim-
ulus environment: An SRN predicts the next word in a sequence

19 Because sentences within paragraphs are more related than sentences
across paragraphs, Tom Landauer (personal communication, 2005) has
suggested that an additional random vector representing the paragraph
context could be added to calculation of the sentence context for each word
as it is encountered in a new paragraph. This would produce greater
similarity for words that have appeared together in paragraphs. For similar
usage of random vectors to represent context, see Dennis and Humphreys
(2001).

20 The topics model is more stochastic because of Gibbs sampling.
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and then looks ahead to see what the correct word actually is, using
the feedback to adjust its connection weights. Plate (2003) has
shown, however, that an SRN can learn as well without feedback
for error correction; thus, Elman’s notion of supervision in an SRN
may be unnecessary.

Modularity and Composite Systems

Traditionally, there has been a widespread assumption that
knowledge of a word’s meaning, knowledge of its lexical class,
and knowledge of its grammatical usage are separate types of
information involving different forms of representation stored sep-
arately. Information about a word’s meaning is stored in the
lexicon as a dictionary-type definition, and knowledge of its gram-
matical usage is represented in the form of rules or production
systems. Although BEAGLE is by no means a model of syntax
but, rather, a model of memory, it can produce limited syntactic
behavior by simply inverting its learning routines from the struc-
ture of the memory representation. It is not directly obvious at
what point the structure of memory can no longer simulate tran-
sition behavior and rules must be relied upon (e.g., novel strings or
long-range dependencies).

In addition to representing both types of information as vector
patterns, BEAGLE represents both with the same vector pattern.
The composite representation containing a superposition of con-
text and order information functions as well at the tasks reported
here as a concatenated system, with context and order information
represented by distinct vectors. In keeping with Occam’s razor,
thus, there does not appear to be a need for separate representations
when a single representation accounts for the data equally well.
Meaning and order information may be represented in the same
form and within the same representation, as Murdock (1982) has
demonstrated with memory for items and associations.

Because both context information and order information are
represented in the same vector, multiple meanings for lexically
ambiguous words can be stored without the need for multiple
representations. Multiple meanings of an ambiguous word are
simultaneously activated when the word is processed (Foss, 1970;
Onifer & Swinney, 1981; Tanenhaus, Leiman, & Seidenberg,
1979) even when one meaning is clearly dominant (Burgess,
Seidenberg, & Tanenhaus, 1988). These results are often taken as
evidence that the multiple meanings of a polysemous word have
their own distinct lexical representations.

In BEAGLE, a polysemous word, such as bank, has only one
lexical representation. The pattern of elements representing bank’s
meaning is dominated by the more frequent financial institution sense;
however, information about the river shore sense is also stored in the
same pattern of elements and may be disambiguated when the word
is used in context. A sentence context that is sufficiently biased
toward one meaning of an ambiguous word can enhance activation of
the congruent meaning (Tabossi, 1988). Even when this effect is not
observed in response latency, it can be by using neurocognitive
measures (Van Petten & Kutas, 1987). Both the frequency of each
meaning and the prior context affect the activation of different word
meanings (Sereno, O’Donnell, & Rayner, 2006).

When used in different contexts, such as “I robbed the bank at
gunpoint” and “I was fishing from the river bank,” different
meanings of bank emerge from BEAGLE’s lexicon; however, the
same lexical representation of mbank responds in both contexts.

Multiple meanings for polysemous words can be stored together
within the same holographic representation—different meanings
emerge from a single representation, depending on context and
order, when it is presented in a sentence.

Conclusion

Language and comprehension are extremely complicated behav-
iors. We do not claim to have a full theory of these behaviors.
Rather, we claim that knowledge underpinning the behaviors is
learned and that it can be acquired using simple mechanisms
operating on a large scale. Whereas LSA has shown that a word’s
contextual history can be learned, we have shown that its order
history can also be learned and, furthermore, that the two types of
information can be stored together in a composite holographic
representation. In short, we have pushed LSA’s view of language
to a new level by bringing syntactic issues within the range of the
empiricist program. It would be imprudent to claim that BEAGLE
captures the complexity of syntax in natural language, but it is fair
to claim that BEAGLE pushes the empiricist program closer to that
goal. Finally, models of higher order comprehension can be sim-
plified if they adopt BEAGLE’s use of order information. Order
information may allow such models to limit the application of
rule-based mechanisms.

Learning and representation in the model are not limited to text but
may be applied to statistical redundancies in many environments. In
this article, we have trained BEAGLE only on text. However, text is
an impoverished version of the full input available to the human
system. Modern models should also consider the grounding of mean-
ing in perception and action (see Glenberg, de Vega, & Graesser, in
press, for recent progress). Text is a convenient set of data on which
to train BEAGLE. However, the model could learn regularities from
visual or auditory input equally well (given appropriate front-end
representation). More work on integrating multisensory data in statis-
tical models is needed, as it is in the role of supervision and environ-
mental feedback in statistical learning.
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Appendix A

Learning and Retrieving Order Information From the Lexicon

The learning of context information in the bound encoding of
the aggregate language environment (BEAGLE) model is straight-
forward and is described in detail in the model description section
of the main text of this article: A word’s context history is the sum
of the environmental vectors for all word tokens it has occurred in
sentences with. The learning and retrieval of order information,
however, have necessarily been simplified in the model description
section, and the algorithms for encoding and decoding of order
information are described here in greater detail.

Encoding Order Information

When learning order information, BEAGLE produces direc-
tional associations by permuting the argument vectors in Positions
1 and 2 differently prior to each pairwise convolution (adapted
from Plate, 1995). When the program initializes, encoding remap-
ping functions are created for Positions 1 and 2, E1 and E2,
respectively. Each function creates a scrambling of the elements in
a vector passed to it; the scrambling order is determined randomly
at initialization and is then constant throughout learning. A vector,
v, has the order of its elements scrambled differently by E1 or E2.
Thus, E1(v) contains the same elements as E2(v) but in a different
order, and hence, the expected cosine of E1(v) and E2(v) is zero.

During encoding, dog bite and bite dog produce unique associ-
ations because the order of the arguments differ, even though
convolution is itself commutative: E1(edog) �* E2(ebite)  E1(ebite)
�* E2(edog). For example, when encoding the position of B in the
sequence ABCD, the following operations would be computed to
yield its order vector in this “sentence.”

To code:
BindB,1 � E1(A) �* E2	�
 A_
BindB,2 � E1	�) �* E2	C
 _C
BindB,3 � E1�E1	A
 �* E2(�)] �* E2	C
 A_C
BindB,4 � E1�E1	�
 �* E2	C
� �* E2	D
 _CD
BindB,5 � E1	E1�E1	A
 �* E2	�)] �* E2	C

 �* E2	D
 A_CD

oB � �
j�1

5

BindB,j

Decoding With Circular Correlation

Learned items may be decoded from the order information in a
holographic vector using inverse circular correlation, y � x �# z.
To decode environmental vectors from memory properly, the
encoding mapping functions must be undone in the appropriate
order. Thus, let D1 and D2 (decoding mappings) be the inverse of
E1 and E2, respectively. If mdog is encoded as mdog � [E1(�) �*
E2(ebite)] � [E1(efeed) �* E2(�)] (i.e., both dog bite and feed dog
are summed into the representation), ebite may be decoded as
approximately equal to D2[E1(�) �# mdog]. From the same lexical
vector, the function D1[E2(�) �# mdog] decodes a facsimile of
efeed. The example of decoding to the right or left of the word
luther, demonstrated in the main text of the article, was specifi-
cally

D1�E2	�
 �# mluther� � emartin,

and

D2�E1	�
 �# mluther� � eking.

As more n-grams are included in the probe (up to the value of
�), the decoded response will be more constrained. For n-grams
larger than a bigram, decoding is computed in a slightly different
way to the left and right of a blank position.

For example, assume that a lexical vector, mB, has the chunk
ABC coded into it:

mB � �E1	A
 �* E2(�
] � 3 A__

�E1(�
 �* E2(C)] � 3 __C

	E1[E1(A
 �* E2(�)] �* E2(C)). 3 A__C

To use information from mB to determine which vector fits in AB_,
information from the last two traces coded is needed. _C contains
information about what vector succeeds B and may be decoded as
D2[E1(�) �# mB] � C. However, the trace A_C also contains
information about what vector succeeds B conditional on A pre-
ceding B. To decode this, A_ may be built and correlated with mB;
specifically,

D2[E1(E1(A) �* E2(�)) �# mB] � C.

If C succeeds B only as a bigram but the sequence AB always
precedes another symbol, D, then the vector retrieved from mB

when probed with B_ will be similar to C, and the vector retrieved
when probed with AB_ (i.e., conditional on A preceding B) will be
more similar to D.

Because coding was done left to right with convolution, decoding
backwards a number of steps is slightly more complicated. Again
assume that

mB � [E1(A) �* E2(�)] � [E1	�) �* E2(C)]

� (E1[E1(A) �* E2(�)] �* E2(C)).

To use information from mB to determine which vector fits in _BC,
mB must be iteratively unpacked. A_ contains information about
what vector preceded B and may be decoded as D1[E2(�) �# mB]
� A. However, A_C also contains information about what vector
preceded B conditional on C succeeding B. The trace A_C was
packed two vectors at a time, left to right, specifically, E1[E1(A)
�* E2(�)] �* E2(C), and thus, it must be iteratively unpacked
from right to left to predict the first position. D1[E2(C) �# mB]
unpacks approximately as E1(A) �* E2(�), and D1(E2(�) �#

[E1(A) �* E2(�)]) unpacks a facsimile of A. The entire operation
to decode the symbol that precedes B from the memory, mB, may
be written as

D1[E2(�) �# mB] � D1[E2(�) �# D1(E2(C) �# mB)] � A.

Furthermore, mC also contains a dependency that A appeared in
Position 1 if B is seen in Position 2 (AB_), and this information can be
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used to further disambiguate the blank position. All chunks up to �
can be used to retrieve order information, but decoding becomes more
complicated to demonstrate.

As a concrete example, consider decoding the blank position in
the triplet martin luther _____.

eking � D2[E1(�) �# mluther] � luther __ from mluther

D2[E1(E1	emartin) �* E2(�)) �# mluther] martin luther __ from mluther

�

D2[E1(E1(�) �* E2(eluther) �# mmartin]. martin luther __ from mmartin

Adding together these three decoded vectors produces a vector
with a similar pattern of elements to eking. Decoding the first
position in ____ luther king, however, would be

emartin � D1[E2(�) �# mluther] � luther from mluther

D1[E2(�) �# D1(E2(eking) �# mluther] � luther king from mluther

D1[E2(eluther) �# D1(E2(�) �# mking]. luther king from mking

Decoding the middle position of martin _____ king would come
from four sources:

eluther � D2[E1(�) �# mmartin] � martin from mmartin

D1[E2(�) �# mking] � king from mking

D2[E1(�) �# D1	E2(eking) �# mmartin] � martin __ king from mmartin

D2[E1(emartin) �# D1(E2(�) �# mking)]. martin king from mking

Sentences and collocation phrases may be progressively un-
packed from the holographic vectors. To use the same chunk again
as an example, when the lexical vector for martin is decoded to the
right, eluther is retrieved. If martin were decoded to the left,
however, no word could be reliably retrieved.A1 Given martin, if
luther is further decoded to the right, king is retrieved, and with
this sequence of three words, if king is decoded to the right, jr is
retrieved, producing the learned collocate martin luther king jr. If
jr is further decoded right, no consistent word can be retrieved.

Descriptive source code, test data, and demonstrations for
BEAGLE may be found online at http://www.indiana.edu/
�clcl/BEAGLE

A1 The phrase doctor martin luther king jr is not found in TASA.
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Appendix B

List of Exemplars by Category

COLORS SPORTS FRUIT COUNTRIES
red football apple Canada
blue baseball orange Mexico
green basketball banana Australia
yellow hockey grape France
purple rugby strawberry Germany
white volleyball plum Japan
black gymnastics pear China
gray soccer lemon Brazil
orange triathlon lime Spain
cyan wrestling cherry India
magenta boxing grapefruit Netherlands
beige golf apricot Cuba
pink lacrosse pineapple Poland
brown motocross coconut Russia

DISEASES VEGETABLE FLOWERS DOGS
Alzheimer’s squash poppy terrier
cancer broccoli rose beagle
arthritis peas daisy bulldog
anemia cauliflower lotus collie
diabetes eggplant orchid doberman
leukemia asparagus marigold hound
hepatitis onions tulip poodle
polio peppers carnation husky
meningitis radish lilac greyhound
smallpox beans sunflower dachshund
influenza parsley geranium chihuahua
malaria rhubarb daffodil foxhound
cholera parsnip lavender mastiff
tuberculosis leeks honeysuckle spaniel

BIRDS FISH CITIES VEHICLES
robin trout Boston car
sparrow cod Ottawa truck
hawk shark London bicycle
bluejay smelt Chicago automobile
pigeon tuna Munich bus
pelican catfish Denver van
duck salmon Berlin taxi
seagull swordfish Tokyo train
swan herring Houston motorcycle
eagle mackerel Canberra plane
crow sturgeon Dublin boat
woodpecker bass Oakland trolley
penguin flounder Detroit ship
goose pickerel Pittsburgh bike

Appendix C

List of Nouns and Verbs Used in Lexical Class Simulation

Nouns Verbs

car go
sun drink
ball eat
earth read
tree move
girl walk
house get
road stop
bus play
door die
rabbit hide
box speak
bed kick
dog think
table ride
toy fly
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